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Norms:

A norm is a way to measure the size of a vector, a matrix, a tensor, or a function. In this
lecture we will learn the norm defination and properties. First of all we devided the norm lecture
to four important subsections.

A) Norm of Vectors

B) Norm of Matrix

C) Norm of Signals

D) Norm of Systems

Vector Norms

A norm describes the size or ‘length’ of a vector x. Although we are used to the traditional
Euclidean norm y/|z1[2 + |zo[> + - - - + |zy[?, a variety of norms can be defined, with the
following conditions:

1. A norm ||x|| is always > 0, with ||x|| = 0 if and only if x =0
2. ||ex|| = [c]||x]| for any scalar ¢
3. [x+yl <%/l + |l¥|l (triangle inequality)

Note that there is an enormous number of different ways to measure the size of a
vector, ie: different vector norms. In this course, we will pay particular attention to the
set of norms called ¢, norms. For a given value of p > 1, the £, norm of a vector is defined
as:

1/p
[xllp = [Z ]xn]“’]

It can be shown that for any p > 0, || - ||, defines a vector norm. The following p-norms are of
particular interest:

e p=1: The £1-norm
[xlly = |z1] + |z2| + -+ + |2n]

e p =2: The £3-norm or Fuclidean norm

Il =/t + a3 + -+ 0} = VT

e p =o00: The £y -norm

Ix[[eo = max |zl
1<i<n

pg. 1 Lecture 02 - LMl in Control Systems  —  Dr. Hadi Azmi



It can be shown that the £o-norm satisfies the Cauchy-Bunyakovsky-Schwarz inequality

T
x"y| < [xll2llyll2

for any vectors x, y € R™. This inequality is useful for showing that the f3-norm satisfies the
triangle inequality. It is a special case of the Holder inequality

1 1
T
x'y| < [|x|lp|ly =1
< y| < [Ix[lpllyllg, P
We say that two vector norms || - ||« and || - ||g are equivalent if there exists constants C; and
(5, that are independent of x, such that for any vector x € R™,
Chlxlla < [Ixllg < Collx|la-

It follows that if two norms are equivalent, then a sequence of vectors that converges to a limit
with respect to one norm will converge to the same limit in the other. It can be shown that all
£y-norms are equivalent. In particular, if x € R", then

Il < lIxlly < vrlixl2,

%o < lIx[l2 < VnlI]|oo,

Ixlloo < Ixll1 < 7[x[|oo-

Example: plot the norm veector ||x|| =1

x| = (x# + x2) ac

x|l = (¢ +x3)"? black
!

x| = (32 +x2)"" green

Ix[| = |x1| + x| blue

1x|| = max(|x¢|, |x2|) red

pg. 2 Lecture 02 - LMl in Control Systems  —  Dr. Hadi Azmi



Matrix Norms

It is also very useful to be able to measure the magnitude of a matrix, or the distance between
matrices. However, it is not sufficlent to simply define the norm of an m X n matrix A as the norm
of an mn-vector x whose components are the entries of A. We instead define a matriz norm to be
a function || - || : R™*™ — R that has the following properties:

e ||A|| > 0 for any A € R™*", and ||A|| =0 if and only if A =0
o ||aA| = |a|||A4|| for any m x n matrix A and scalar «
o |[A+ B| < ||A| +|B| for any m x n matrices A and B

Another property that is often, but not always, included in the definition of a matrix norm is the
submultiplicative property: if A is m X n and B is n X p, we require that

IAB] < [|A[B]I-

This is particularly useful when A and B are square matrices.
Any vector norm induces a matrix norm. It can be shown that given a vector norm, defined
appropriately for m-vectors and n-vectors, the function || - || : R™*"™ — R defined by

A

A f— pr—
14l = o0 X e

is a matrix norm. It is called the natural, or induced, matrix norm. Furthermore, if the vector
norm is a £,-norm, then the induced matrix norm satisfies the submultiplicative property.

The following matrix norms are of particular interest:

e The £1-norm:

4l = max, fl4x]s = max Zw

That is, the £1-norm of a matrix is its maximum column sum.
e The £,,-norm:

T
|Alleo = max [[4xlo0 = max. Z; |aij].

That is, the £o-norm of a matrix is its maximum row sum.
e The fy-norm:

IIAIIQ—”nﬁaX 1 Ax[l2-

Theorem Let A be an m X n matriz. Then
|A]|lo = max [Z |a-3'j|:| (max absolute row sum)

1<i<m

|A||L = ax [Z |ass| } (max absolute column sum)
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Example Determine ||Al|s and ||Al|; where

1 2 4
A= 3 0 12
-20 -1 2

We have
|All; = max{(1+3+20),(2+1),(4+ 12+ 2)} = max{24,3,18} =24

|A]|oo = max{(1+2+4),(3+12),(20+ 1+ 2)} = max{7, 15,23} = 23

Algebraic solution of Linear Least-Squares Problems

Let us consider our standard linear problem as defined before:
Ax =y

and focus specifically on the case where an exact solution does not exist, for instance
because the measurement vector y has noise in it. In this case, a very common approach
to solving this problem is to seek the best solution X in the sense of matching the mea-
surement vector as closely as possible. How do we define ‘as closely as possible’? Here is
where the norms come in, as a measure of size (or distance):

X = argmin ||Ax —y||,
X

Using basic calculus, in order to minimize ||[Ax — y||3 we can look for the choice of x
(which we call X) such that the gradient of ||Ax — y||% is zero, ie:

AT(Ax—y)=0
(let’s stick to real-valued vectors and matrices, for simplicity), which can be rewritten as:
ATA%x = ATy

Now, if the matrix ATA has an inverse matrix (ATA)~!, we can apply it to both sides
of the equation above, ie:

(ATA)_I(ATA)}A( = (ATA)_lATy
or in other words,
x=(ATA) ATy

And this is our linear least squares solution.
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Signal Norms

We consider real valued signals! that are piecewise continuous functions of time
t € [0, 00). In this section we introduce some different norms for these signals.

Definition (Norm on a Vector Space) Let V be a vector space, a given non-
negative function ¢ : V— R™T is a norm on V if it satisfies

o()>0, ¢(v)=0 < v=0
¢ (axv) = |a|p(v)
P(v+w)<¢()+¢(w)

foralea e Rand v, we V.

A norm is defined on a vector space. To apply this concept to the case of signals,
it is necessary to define sets of signals that are vector spaces. This is the case of the

signal spaces described below.

L1-Space and L.1-Norm

The L;-space is defined as the set of absolute-value integrable signals, i.e., L. =
{u(t) eR: f0+°° lu(t)|dt < oo}. The Lj-norm of a signal u € L1, denoted |[u]|1, is

given by
+00
2]l =/0 }u(t)‘dt

this norm can be used, for instance, to measure a consumption. In the case of
multidimensional signals u(t) = (u1(z), ..., uy, T e L’:” with u;(t) e Ly i =
I,...,ny, the norm is given by

ny

+oo Mu
el 1 =/O Z‘ug(r)‘dr=Z”ug(l‘)”]
i=1

i=1
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L»-Space and 1.;-Norm

The L,-space is defined as the set of square integrable signals, i.e., we have L, =
{u(t) eR: f0+°° u(t)?dt < 0o). The Ly-norm of a signal u € Ly, denoted ||u]|7, is

given by
+00 1/2
lull, = ( / u(r)zdr)
0

the square of this norm represents the total energy contained in the signal. According
to Parseval’s theorem,* the Lo-norm of a signal u# € L can be calculated in the
frequency-domain as follows:

| o 1/2
||H||2=(—2 / UGo)] da))
a J_

where U (jw) is the Fourier transform of the signal u(t).

In the case of multidimensional signals u(t) = (u1(¢), ..., up, T e Lg” with
ui(tyeloi=1,...,n,, the norm is given by

+00 % o0 Mu y
— IT fdf - f xf df I
lull ([0 wT ) ) (0 >y ) (Zw |2)

Loo-Space and L,-Norm

The Lso-space is defined as the set of signals bounded in amplitude, i.e., Lo =
{u() € R:sup,g |u(?)| < oo}. The Loo-norm of a signal u € Loo, denoted [|u|[oo,
is given by
it co = Sup|u(t)‘
t=0

this norm represents the maximum value that the signal can take. In the case of
multidimensional signals u(¢) € Lgs (u(t) = (u1(¢), ..., Un, ()T with u; () € Loo),
the norm is given by

l#]lcc = max (sup|u (t)‘) = max ||uI loo
1<i<n, t>0 1<
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Extended L ,-Space

The L,-space, p = 1,2, 0o, only includes bounded signals. For instance, the L;-
space only includes signals with bounded energy. In order to also include in our
study unbounded signals as well, it is necessary to introduce extended versions of
the standard L, -spaces. For this purpose, consider the projection function denoted
Pr(.) defined as

u(t), t<T

Pr(u(®)) =ur(t) = 0 o

where 7 is a given time interval over which the signal is considered. The extended
L,.-space, p = 1,2, 00, is then defined as the space of piecewise continuous signals
u:Ry — R" suchthat ur € L.

RMS-Value

Some signals are of special interest for system analysis and synthesis. This is the
case, for instance, of the sinusoidal signal u(t) = A sin(wt +¢). However, this signal

is not square integrable and is often called an infinite energy signal. A very common
measurement of the size of an infinite energy signal is the root-mean-square (RMS)
value. The RMS-value of a given signal u(t) is defined as

1 T 1/2
Upms = ( lim — u(r)? dt)

T—oo T 0

The square of this quantity represents the average power of the signal. The RMS-
value of a given signal u(¢) can be also computed in the frequency domain as fol-

lows:
1 +00 1/2
Urmg = (— [ Sy (@) da))
2 J_

where S, (w) is the power spectral density®> (PSD), which represents the way in
which the average power of the signal u(¢) is distributed over the frequency range.
In the case of multidimensional signals u () = (u((¢), ..., u,, ()T, the RMS-value
of the vector signal u(t) is given by

| (T 1/2
Urms = (Tleoo ?fo u@®) T u(t) dr)
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The RMS-value of a given signal vector u(¢) can also be computed in the frequency
domain as follows:

| o 1/2
Urims = (TI'E[CG (_ f SL{ (a)) da)))
21 J_oo

where S, (w) is the power spectral density matrix* of the signal vector u(z).

LTI Systems

Broadly speaking, a system can be seen as a device that associates to a given input
signal u(t), an output signal y(¢). In this book, for tractability reasons, we consider
the particular class of linear time invariant finite-dimensional systems or LTI-system

for short. The so-called state-space representation of this kind of system is defined

as follows:

x(t)=Ax(t) + Bu(r)
y(t) =Cx(t) + Du(t)

where 1 € R" is the input vector, y € R"» is the output vector, x € R"~ is the state
vector, and A, B, C, D are constant matrices of appropriate dimension.

t
x(t) = A0 x (1) +/ AU Bu(r)dr

fo

t
y(1) = CeAU™0x (19) + f Ce*" D Bu(r)dt + Du(r)

Io

we obtain the input/output relation

Y(s)=G(s)U(s), G(s)=C(sI—A)'B+D
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Noise n Ym (s) ‘ »
measurement i ? +—» Control

System Norms

Given an LTI-system an important issue is to characterize, in some sense, the am-
plification (or attenuation) introduced by the system for a given input signal. To em-
phasize the importance of this issue, consider the control problem shown in Fig. 2.2
where K (s) is the controller to be designed and G(s) is the transfer matrix of the
system to be controlled.

The objective is to determine the controller K (s) to obtain a low tracking error
and a control signal compatible with the possibility of the plant (i.e. the control
signal must be admissible by the system) despite the external influences r, d, and n.
One way to evaluate the performance of the closed-loop system is to measure the
gain provided by the system T, between the inputs (r, d and n) and the outputs e

and u:

r
(J-ro:

Good performance is then obtained if the transfer matrix 7(s) is small or, more
specifically, if the gain of T'(s) is small. The word “gain” must be understood here
as a measurement of the size of the matrix 7 (s).

The gain of a system quantifies the amplification provided by the system between
the inputs and the outputs. This notion of gain needs to be defined more accurately,
this is the subject of the next section on Hy and Hy, norms of a system.

Definition of the Hy-Norm and Hyo-Norm of a System

Let G(s) be the transfer function of a stable single input single output (SISO) LTI-
system of input u#(¢) and output y(¢). We know that G(s) is the Laplace transform
of the impulse response g(¢) of the system, we define the Hy-norm of G(s) as the
L>-norm of its impulse response:
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00 172
||G||z=(f0 g(r)zdr) =gl

Note that the previous norm is defined for a particular signal which is here the
Dirac impulse §(#). According to Parseval’s theorem the H, norm is defined in the
frequency domain as follows:

| oo NS Ve
IGll2 = (2—[ }G(jw)}“dw)
T J-o0

We can define the gain provided by the system for a given particular input as
the ratio of the Lj-norm of the output signal to the L>-norm of the input signal
|G llgain = [[Gull2/|lull2, with [lu||2 # O. For obvious reason, this gain is often re-
ferred to as the Ly-gain of the system. Instead of evaluating the L,-gain for a par-
ticular input, one can also determine the greatest possible Lo-gain over the set of
square integrable signals, this is the definition of the Hyo-norm of a system

[Gull2
[Glloc = sup
ucl, ”” ”2
[luell2#0

This quantity represents the largest possible Ly-gain provided by the system. For a
MIMO system with n,, inputs and n,, outputs, the Hoo-norm is defined as
Gull2

werye Nl
[lze)l2#0

1G oo = with y e L)’

Singular Values and Hy, Hoo-Norms
Let G(s) be a stable and strictly proper transfer matrix'® of dimension p x m. The

set of stable and strictly proper transfer matrices is denoted RH;y ™ For any trans-
fer matrix G(s) € RH;” M we define the Hp-norm as'*

| ptoo 1/2
|G, = (g/_ Trace(G(ja))G*(ja)))da))

this norm can be also expressed using the singular values: !

1 400 Min(m, p) 1/2
ool= (35 Y abltm)ao)
® =1

pg. 10 Lecture02 - LMl in Control Systems  —  Dr. Hadi Azmi



The square of the H>-norm represents the area under the curve of the sum of squared
singular values.

Now, consider a stable and proper transfer matrix G(s). The set of stable and

proper transfer matrices is noted RH?,;';XH". For any transfer matrix G(s) € RHES I
the Hoo-norm is defined as

|G()] oo =sup5 (G(je)

This norm represents the largest possible frequency gain, which corresponds to the
maximum of the largest singular value of G(jw) (see relation (2.35) and Fig. 2.3).
In the case of a SISO system, ||G(s)]| s 18 the maximum of |G (jw)|

G lloo = max|G (jo)|

Energy and power for continuous-time signals

The terms signal energy and signal power are used to characterize a signal.
They are not actually measures of energy and power. The definition of signal
energy and power refers to any signal x(r), mcluding signals that take on
complex values.

Definition
The signal energy in the signal x(@‘) 1S

E= [|+0Par

—

The signal power in the signal x(f) 18

T
1 2
P=1im— || xlt)|"dr.
mor _J] o)
If 0<FE <o, then the signal r(r) 13 called an energy signal. However, there are

signals where this condition is not satisfied. For such signals we consider the
power. If 0 <P <o, then the signal 1s called a power signal. Note that the power
for an energy signal is zero (P = 0) and that the energy for a power signal is

infinite (E = oo). Some signals are neither energy nor power signals.

Let us consider a periodic signal x(r) with period 7. The signal energy in
one period is
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A Venn diagram surmmarizing the set inclusions is shown in Figure 2.1. Note that the set labeled

“pouwr” containg all power signals for which pow is finite; the set labeled “17 containg all signals of

finite 1-norm; and so on. It is instructive to get examples of functions in all the components of this

diagram (Exercise 2).| For example, consider

0, ift <0
u () =< 1/t if0<t<1
0, if ¢ > 1.

This has finite 1-norm:

!
[l |l :/ —dt = 2.
0 Vit

Its 2-norm is infinite because the integral of 1/ is divergent over the interval [0,1]. For the same
reason, u; is not a power signal. Finally, u; is not bounded, so ||u1| s i infinite. Therefore, u,
lives in the bottom component in the diagram.

pois

L. If ||u||s < oo, then u is a power signal with pow(u) = 0.

2. If u is a power signal and |u|e < 00, then pow(et) < ||1e|oo.

3. If |lull; < oo and ||u||ee < oo, then ||ull2 < (||¢]lo ||u]l1)1/2, and hence ||u||s < co.

Assume the system with input “u” and output “y” and stable ans strictly proper
transfer function G (s)

u(t) = o(t)  wu(t) = sin(wt)
yll2 1G]l x
19l oo G| oo G (jw)|
|
paw(y) 0 v’—§|(_r{}¢,)|
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