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Abstrmt-The MATLAB toolbox YALMIP is introduced. 
It is dscribed how YALMIP can be used to model and 
solve optimization problems typically occurring in systems and 
control theory. 

I .  INTRODUCTION 

Two of the most important mathematical tools introduced 
in control and systems theory in the last decade are proba- 
bly semidefinite programming (SDP) and linear matrix in- 
equalities (LMI). Semidefinite programming unifies a large 
number of control problems, ranging from the more than 
100 year old classical Lyapunov theory for linear systems, 
modem control theory from the 60's based on the algebraic 
Riccati equation, and more recent developments such as R- 
control in the So's. More importantly, LMIs and SDP has led 
to many new results on stability analysis and synthesis for 
uncertain system, robust model predictive control, control 
of piecewise affine systems and robust system identification, 
just to mention a few applications. 

In the same sense that we earlier agreed that a control 
problem was solved if the problem boiled down to a 
Riccati equation, as in linear quadratic control, we have 
now come to a point where a problem with a solution 
implicitly described by an SDP can he considered solved, 
even though there is no analytic closed-form expression of 
the solution. It was recognized in the 90's that SDPs are 
convex optimization problems that can be solved efficiently 
in polynomial time [13]. Hence, for a problem stated using 
an SDP, not only can we solve the problem but we can 
solve it relatively efficiently. 

The large number of applications of SDP has led to an 
intense research and development of software for solving 
the optimization problems. There are today around 10 
public solvers available, most of them free and easily 
accessible on the Internet. However, these solvers typically 
take the problem description in a very compact format, 
making immediate use of the solvers time-consuming and 
error prone. To overcome this, modeling languages and 
interfaces are needed. 

This paper introduces the free MATLAB toolbox 
YALMIP, developed initially to model SDPs and solve 
these by interfacing external solvers. The toolbox makes 
development of optimization problems in general, and con- 
trol oriented SDP problems in particular, extremely simple. 
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Rapid prototyping of an algorithm based on SDP can 
be done in matter of minutes using standard MATLAB 
commands. In fact, learning 3 YALMIP specific commands 
will be enough for most users to model and solve their 
optimization problem. 

YALMIP was initially indented for SDP and LMIs 
(hence the now obsolete name Yet Another LMI Parser), 
but has evolved substantially over the years. The most 
recent release, YALMIP 3, supports linear programming 
(LP), quadratic programming (QP), second order cone pro- 
gramming (SOCP), semidefinite programming, determinant 
maximization, mixed integer programming, posynomial ge- 
ometric programming, semidefinite programs with bilinear 
matrix inequalities (BMI), and multiparametric linear and 
quadratic programming. To solve these problems, around 20 
solvers are interfaced. This includes both freeware solvers 
such as SeDuMi [I61 and SDPT3 [17], and commercial 
solvers as the PENNON solvers [7], LMILAB 141 and 
CPLEX [I].  Due to a flexible solver interface and internal 
format, adding new solvers, and even new problem classes, 
can often be done with modest effolt. 

YALMIP automatically detects what kind of a problem 
the user has defined, and selects a suitable solver based on 
this analysis. If no suitable solver is available, YALMIP 
tries to convert the problem to he able to solve it. As an 
example, if the user defines second order cone constraints, 
hut no second order cone programming solver is available, 
YALMIP converts the constraints to LMIs and solves the 
problem using any installed SDP solver. 

One of the most important extension in YALMIP 3 
compared to earlier versions is the possibility to work with 
nonlinear expression. This has enabled YALMIP users to 
define optimization problems involving BMIs, which then 
can he solved using the solver PENBMI [6], the first 
public solver for problems with BMl constraints. These 
optimization problems are unfortunately extremely hard to 
solve, at-least globally, but since an enormous amount of 
problems in control theory falls into this problems class, it 
is our hope that YALMIP will inspire researchers to develop 
efficient BMI solvers and make them publicly available. 

Another introduction in YALMIP 3 is an internal hranch- 
and-bound framework. This enables YALMIP to solve 
integer programs for all supported convex optimization 
classes, i.e. mixed integer linea, quadratic, second order 
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cone and semidefinite programs. The built-in integer solver 
should not he considered a competitor to any dedicated 
integer solver such as CPLEX [l] .  However, if the user 
has no integer solver installed, he or she will at-least be 
able to solve some small integer problems using YALMIP. 
Moreover, there are currently no other free public solvers 
available for solving mixed integer second order cone and 
semidefinite programs. 

The latest release of YALMP has heen extended to 
include a set of mid-level commands to facilitate advanced 
YALMIP programming. These commands have been used 
to develop scripts for moment relaxation problems [lo] 
and sum-of-square decompositions 1141, two recent ap- 
proaches, based on SDP and LMIs, for solving global poly- 
nomial optimization problems. There are dedicated, more 
efficient, packages available for solving these problems 
(GloptiPoly [SI and SOSTOOLS [15]), and the inclusion of 
these functionalities are mainly intended to give advanced 
users hints on bow the mid-level commands can he used. 
The sum-of-square functionality does however have a novel 
feature in that the sum-of-squares problem can be non- 
linearly parameterized. In theory, this means that this func- 
tion can be used, e.g., to synthesize controllers for nonlinear 
systems. However, the resulting optimization problem is a 
semidefinite program with BMls instead of LMIs. 

Although SDPs can he solved relatively efficiently using 
polynomial time algorithms, large-scale control problems 
can easily become problematic, even for state-of-the-art 
semidefinite solvers. To reduce computational complex- 
ity, problem-specific solvers are needed in some cases. 
One problem class where structure can be exploited is 
KYP problems, a generalization of Lyapunov inequalities. 
YALMIP comes with a specialized command for defin- 
ing KYP constraints, and interfaces the dedicated solver 
KYPD [ZO]. 

Other features worth mentioning are the capabilities to 
work transparently with complex-valued data and con- 
straints, easy extraction of dual variables and automatic 
reduction of variables in equality constrained problems. 

11. PRELIMINARIES AND NOTATION 

A symmetric matrix P is denoted positive semidefinite 
(P t 0) if Z'PZ 2 0 '$2. Positive definite (P F 0) is the strict 
version zTPz > 0 Vz # 0 . Linear matrix inequality (LMI) 
denotes a constraint of the form Fo + & fix! t 0, where 
f i  are fixed symmetric matrices and x E B" is the decision 
variable. Constraints Po +Cy=, f i x ;  + E:=, Cy=, fijx;lxixj t 0 
are denoted BMIs (bilinear matrix inequalities). Constraints 
involving either LMIs or BMIs are called semidefinite 
constraints. Optimization problems involving semidefinite 
constraints are termed semidefinite programs (SDPs). 

MATLAB commands and variables wiU be displayed 
using typewriter font. Commands will be written on 
separate lines and s t m  with >>. 

111. INTRODUCTION TO YALMlP 
This paper does not s ene  as a manual to YALMIP. 

Nevertheless, a short introduction to the basic commands 
is included here to allow novel users to get started. It is 
assumed that the reader is familiar with MATLAB. 

A. Defining decision variables 
The central component in an optimization problem is 

the decision variables. Decision variables are represented 
in YALMIP by sdpvar objects. Using full syntax, a 
symmetric matrix P E R"'" is defined by the following 
command. 

>> P = sdpvar (n, n, ' symmetric', ' real' ) ; 

Square matrices are by default symmetric and real. so the 
same variable can be defined using only the dimension 
arguments. 

>> P = sdpvar (n, n) ; 

A set of standard parameterizations are predefined and can 
he used to create, e.g., fully parameterized matrices and 
various type of matrices with complex variables. 

>> Y = sdpvar(n,n,'full'); 
>> X = sdpvar (n, n, ' hermitian', ' complex' ) ; 
Important to realize is that most standard MATLAB com- 
mands and operators can he applied to sdpvar variables. 
Hence, the following construction is valid. 

>> X = [P P(:,l);ones(l,n) sum(sum(P))l; 

B. Defining consfrainfs 
The most commonly used constraints in YALMIP are 

element-wise, semidefinite and equality constraints. The 
command to define these is called set'. 

The code below generate a list of constraints, gathered 
in the set object F, constraining a matrix to be positive 
definite, having all elements positive, and with thc sum of 
all elements being n. 

>> P = sdpvar(n,n); 
>> F = set(P > 0); 
>> F = F + set(P(:) > 0 ) ;  
>> F = F t set(sum(sum(P)) == n); 

Note that the operators > and < are used to describe 
both semidefinite constraints and standard element-wise 
constraints*. A constraint is interpreted in terms of semidef- 
initeness if both left-hand side and the right-hand side of 
the constraint is symmetric, and as an element-wise con- 
straints otherwise. In addition to these standard constraints, 
YALMIP also supports convenient definition of integral- 
ity constraints, second order cone constraints and sum- 
of squares constraints. Without going into details, typical 
notation for these constraints would be 

'Not to be confused with the built-in function set in MATLAB 
2NOn-suict inequalities (>= and <=) are suppotted dso. The reader is 

referred to the YALMlP manual for details. 
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>> F = set (integer (x) ; 
>> F = set (cone (A*x+b, c' *x+d) 1 ; 
>> F = set(sos(ltxtx"7tx^8)); 

C. Solving optimizution problems 

Once a11 variables and constraints have been defined, the 
optimization problem can be solved. Let us for simplicity 
assume that we have matrices c, A and b and we wish 
to minimize cTx subject to the constraints Ax 5 b and 
E x i  = I .  The YALMlP code to define and solve this prob- 
lem is extremely intuitive and is essentially a one-to-one 
mapping from the mathematical description. The command 
solvesdp3 is used for all4 optimization problems and 
typically take two arguments, a set of constraints and the 
objective function. 

>> x = sdpvar (length ( c )  ,1) ; 
>> F = set(A*x < b)+set(sum(x)==l); 
>> solvesdp(F, c' *x) ; 

YALMIP will automatically categorize this as a linear pro- 
gramming problem and call a suitable solver. The optimal 
solution can he extracted with the command double (x) . 
A third argument can be used to guide YALMIP in the 
selection of solver, setting display levels and change solver 
specific options etc. 

>> ops = sdpsettings ( '  solver', 'glpk' ) ; 
>> ops = sdpsettings(ops,'glpk.dual',O); 
>> ops = sdpsettings (ops,  'verbose', 1) ; 
>> solvesdp (F, c' *x, ops) ; 

Iv. CONTROL RELATED OPTIMIZATION USING YALMIP 

As stated in the introduction, YALMIP is a general 
purpose toolbox for modeling and solving optimization 
problems using MATLAB. The focus in the remainder of 
this paper will however be on control related problems, and 
we will illustrate how straightforward it is to model complex 
optimization problems using YALMIP. 

A. Standard SDP problems in control 

The perhaps most fundamental problem in control and 
systems theory is stability analysis using Lyapunov theory. 
A linear system X =Ax is asymptotically stable if and 
only if the real part of all eigenvalues of A are negative, 
or equivalently, there exist a solution P to the following 
Lyapunov inequality. 

A ~ P + P A + O ,  P = P ' + O  

It is easy to realize that this is a linear matrix inequality, 
and the decision variables are the elements of the matrix P.  

)The name solvesdp was chosen Since YALMIP initially only solved 
semidefinite programs. For compatibility issues, the name is kept even 
though the command now is used also for LP. QP. SOCP etc. 

'Special higher level problems such as moment relaxations, sum-of- 
squares decompositions and multiparametric programs are invoked using 
specialized. but syntacrieally similar, commands. 

The YALMIP implementation of this feasibility problem is 
given below. 

>> F = sdpvar (n, n) ; 
>> F = set(F > 0 )  + set(A'*P+P*A < 0); 
>> solvesdp (F) 

The problem above can be addressed more efficiently by 
solving the classical Lyapunov equation, and the benefit of 
semidefinite programming and YALMIP is appearant first 
when we try to solve more complex problems. Consider the 
problem of finding a common Lyapnnov function for two 
different systems with state matrices A ,  and A>. Further- 
more, let us assume that we want to find a diagonal solution 
P satisfying P >- @ for some given symmetric matrix @, 
and moreover, we want to find the minimum trace solution. 
Stating this as an SDP using YALMIP is straightforward. 

>> P = diag (sdpvar (n, 1) ) ; 
>> F = set(P > a ) ;  
>> F = F + set (Al'*P+P*Al c 0) ; 
>> F = F t set (AZ'*F+P*A2 c 0) ; 
>> solvesdp (F, trace (P) ) 

To make things even more complicated, consider the min- 
imum Frobenius norm (TrPPT) problem. The changes in 
the code are minimal. 

>> solvesdp (F, trace (P*P' ) ) 

YALMlP will analyze the objective function and detect that 
it is a convex quadratic function. Since no public SDP solver 
currently suppon quadratic objective functions, YALMIP 
will internally convert the problem by performing suitable 
epigraph formulations, and solve the problem using any 
available SDP solver. 

B. Determinant maximization problems 

As an example of a more advanced optimization problem 
based on semidefinite programming, let us address the 
problem of computing a state feedback controller U = Lr 
together with a maximally large invariant region 9, for a 
saturated single-input system x = Ax+Bu,  1111 5 1. If we 
work with an ellipsoidal region 8 = {x : X'PX 5 I ,  this can 
addressed using semidefinite programming. To see this, let 
us first state the problem in a mathematical framework. 

( A + B L ) ~ P + P ( A + B L )  5 o 
P t O  

lLxl 5 I v , r : X ~ P X <  1 

The first constraint ensures invariance of 9 (x'Px is non- 
increasing), the second constraint ensures that X'PX < 1 de- 
fines an ellipsoidal region, while the last constraint ensures 
IuI 5 1 in 9. 

The constraints above are not LMIs, hut a couple of 
standard tricks can he used to overcome this [3]. To begin 
with, multiply the first constraint from left and right with 
P-' and introduce the new variables Q = P-' and Y = 
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LP-' .  This yields the LMI ATQ+QA+YTBT+BY 3 0. 
Furthermore, it can easily be shown that max ILrl = 

m. Squaring this expression, inselting the definition 
of Q and Y, and performing a Schur complement shows that 

the third constraint is equivalent to [,,lT 

A natural objective function is the volume of the ellipsoid 
9. The volume of this ellipsoid is proportional to detP-', 
or equivalently det Q. Hence, if we search for the maximal 
volume invariant ellipsoid, and the corresponding state 
feedback, we need to solve the following problem. 

r r p x g  

k 0 

max detQ 
Q,Y 

~ . ~ . A ~ Q + Q A + Y ' B ~ + B Y  3 o 

Still, this is not a standard SDP, but we have a so 
called determinant maximization (MAXDET) problem [191. 
Surprisingly, this class of problems can be solved with 
just slightly extended SDP solvers [21], or be converted 
to a standard SDP problem [13]. YALMIP supports the 
dedicated MAXDET solver [21], but can also use the con- 
struction in [I31 to convert the problem to a standard SDP 
and solve the problem using any installed SDP solver. The 
following code implements the whole synthesis problem. 

>> Q = sdpvar(n,n); 
>> Y = sdpvar(1,n); 
>> F = set ( Q > O ) ;  
>> F = F + set(A'*Q+Q*A+Y'*B'+B*Y < 0); 
>> F = F + set(I1 Y ; Y '  Q 1 > @ ) ;  
>> solvesdp (F,-logdet (Q) ) ; 
>> P = inv(double(Q1 1 ; 
>> L = P*double (Y) ; 

Notice the objective function logdet (Q) . This command 
is the key to declaring a MAXDET problem in YALMIP.' 

C. Large-scale KYP-SDPs 
Despite the celebrated polynomial complexity of con- 

vex SDPs, they do admittedly scale poorly when applied 
to large-scale system analysis and control synthesis. The 
reason is most often the introduction of a large Lyapunov- 
like matrix in the problem. 

A substantial number of problems in systems and control 
theory can be addressed using the Kalman-Yakubovic- 
Popov lemma, often giving rise to SDPs of the following 
form. 

min c'x 
r.p, 

'This somewhat strange notation is a hetirage from earlier version of 
YALMIP when MAXDET problems ody could be solved using [Zl]. In 
this solver. the objective function Li c'r-log derQ(x) 
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By exploiting connections to classical Lyapunov equali- 
ties and using duality theory for SDP, specially crafted 
algorithms can eliminate the computational impact of the 
complicating matrices 9. and improve performance several 
orders of magnitude [ I l l .  A clever implementation of the 
ideas in [ I l l  can he found in the MATLAB package 
KYPD [ZO]. This special purpose solver can be used to- 
gether with YALMIP. 

Consider the problem of computing the worst case 5% 
gain from U to y for the the system i = A . +  Bu, y = Cx. 
This can be written as an SDP with one KYP constraint. 

min 1 
I.P 

A~P+PA+C'C PB [ BTP 5s. 

A KYP constraint can conveniently be defined in 
YALMIP by using the command kyp. The use of kyp 
not only simplifies the code but, more importantly, enables 
YALMIP to categorize the problem as a KYP-SDP and call 
KYPD if available. 

>> P = sdpvar(n,n); 
>> t = sdpvar'(1.1); 
>> M = blkdiag (C '  *C, -t*eye ( m )  1 ; 
>> F = set(kyp(A,B,P,M) < 0); 
>> solvesdp (F, t, ops) ; 

D. Non-convex semidefinite programming 
Although many problems in control and systems theory 

can be modeled using LMIs and solved using convex 
semidefinite programming, even more problems turn out to 
be non-convex. 

One of the most basic problem in control theory is static 
output feedback where we search for il controller U = Ky 
and Lyapunov function xTPx.  The closed-loop Lyapunov 
stability condition gives the following constraints. 

(A+BKC)~P+P(A+BKC) +o ,  P = P ~ + O  

Due to products between elements in P and K, the constraint 
is not linear, hut a bilinear matrix inequality (BMI). Opti- 
mization problems with BMIs are known to be non-convex 
and NP-hard in general [IS], hence intractable in theory. 
However, there is code available to attack these problems, 
and it is possible to find solutions in some practical cases. 

YALMIP code to define BMI problems is no more com- 
plicated than code to define standard LMIs. The following 
program defines stability conditions for the output feedback 
problem, and tries to obtain a feasible solution by calling 
any installed BMI solver (YALMIP can currently only 
interface the BMI solver PENBMI [6]) 

>> P = sdpvar(n,n); 
>> K = sdpvar(m,n); 
>> AC = AtB*K*C; 
>> F = set(P > 0); 
>> F = F + set (Ac' *P+P*Ac < 0); 
>> solvesdp (F) 

11 
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E. Sum-of-squares decompositions 

Sum-of-squares decompositions (SOS) is a recent tech- 
nique for analyzing positivity of polynomials using semidef- 
inite programming [14]. The basic idea is to decompose a 
polynomial p ( x )  as a product v(x)'Qi,(x) for some poly- 
nomial vector v ( x )  and positive semidefinite matrix Q, thus 
trivially showing non-negativity. As an example, consider 
the following decomposition. 

Since the matrix on the right-hand side is positive semidefi- 
nite, the polynomial on the left side is non-negative. Finding 
a decomposition for this example in YALMIP is done with 
the following code. 

>> x = sdpvar (1,l) ; 

>> F = set ( s o s  (p) ) ; 
>> solvesos (F) 

A SOS-solver essentially derives a set of constraints that 
have to hold on the matrix Q, and then solves a semidefinite 
program to find a positive semidefinite Q satisfying all 
constraints. There is already user-friendly and efficient 
software available for these decompositions [15], hut there 
might be cases when YALMIP is a valuable alternative. 

As an example of a unique feature of the SOS- 
functionality in YALMIP, let us study nonlinear control 
synthesis for the following model (taken from [SI). 

>> p = 1txtx-4; 

f l  = -1.5.r-OS$-x2 

x2 = u 

Define the vector z = [xi x2 $1 . Our goal is to find a 
swbilizing nonlinear controller U = K z  and a non-quadratic 
Lyapunov function V = zTPz, P k 0. To prove stability, we 
would like to enforce V 5 -xTx - uTu. Note that this is a 
polynomial inequality in x, parameterized in the decision 
variables P and K .  In order to address this problem using 
SOS, wesea rch fo rPkOandKsuch tha t  - x 7 x - u r u - V  
is a sum-of-squares. 

For an implementation in YALMIP, we begin by defining 
states and decision variables. 

>> xl = sdpvar(1,l);xZ = sdpvar(1,l); 

>> K = sdpvar(l,3); 
>> P = sdpvar(3,3); 

Closed loop dynamics and differentiation of V ( x ) .  

>> U = K*z; 
>> f = [-1.5*~-1^2-0.5*~~1^3-~~2;~]; 
>> Vdot = jacobian(V,x)*f) 

T 

>> 2 = [xl;x2;Xl-21; 

The constraints are a mix of standard constraints and SOS 
constraints! 

>> F = set (P>O) t set (-25<K<25); 
>> F = F + set ( S O S  (-x' *x--u' *u-Vdot) ) ; 

The important catch here is that the SOS-constraint is hilin- 
early parameterized in P and K .  YALMIP will automatically 
realize this and formulate the SOS-decomposition using 
BMIs, and call a BMI solver to find the decomposition. The 
internal SOS-is invoked', using T r P  as objective function. 

>> solvesos (F, trace (P) ) ; 

If a feasible solution is found, double(P) and double(K) 
recovers the controller and the Lyapunov function. 

It should he stressed that this functionality currently is 
rather academic, since it requires the solution of a non- 
convex semidefinite progmam. Hence, it is only applicable 
to small systems. For this to become a viable approach, 
vastly improved robustness and efficiency of BMI solvers 
is needed. 

E Multiparametric programming 

Another field in control theory where optimization has 
had a tremendous impact is model predictive control 
(MPC) [12]. The basic idea in model predictive control 
is to pose optimal control problems on-line and solve 
these optimization problems continuously. MPC has had 
a substantial impact in practice, and is probably one of 
the most successful modem control algorithms. However, 
since MPC is based on optimization, it requires a consid- 
erable amount of on-line computer resources to solve the 

optimization problems fast enough. Hence, the impact in 
systems requiring fast sampling or cheap on-line computers 
has been limited. 

The on-line optimization problems for model predictive 
control, applied to a constrained linear discrete-time sys- 
tem x x + ~  = Axk + Buk,yk = Cxk, essentially boils down to 
optimization problems of the following form. 

z*(x) =argmjn ~ z ~ H z + ( c + F ~ ) ~ z + ~ ~ . x  

Gz < w + E x  

The variable x is typically the current state xk. whereas the 
decision variable z normally denotes a control trajectory 
to he optimized. The variables H ,  F ,  c, d,  G, w and E are 
constant data depending on the model and controller tuning. 
Note that the problem is a QP in z forjxed x. 

The function z*(x), i.e., the optimal future control trajec- 
tory as function of the state, can be shown to piecewise 
affine. Hence, if we can find this function off-line, the 
on-line effort essentially reduce to a function evaluation. 
The concept of explicit solutions to parameterized opti- 
mization problems is called multiparametric programming. 

'Constraints on K are added for numencal reams 
'YALMIP will aufomatiicdly detect parametric decision variables 
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An introduction to this field, with a bias towads control 
applications, can be found in [2]. 

Efficient algorithms to calculate explicit solutions to 
multiparametric LPs and QPs have recently been publicly 
available in the MATLAB toolbox MPT [9]. This toolbox 
is interfaced in YALMIP, enabling extremely convenient 
definition and solution of multiparametric problems. 

Giving a detailed description of MPC is beyond the scope 
of this paper, so let us just state and solve a typical MPC 
problem, for a given state xk, using YALMIP. 

>> U = sdpvar ( N ,  1) ; 
>> Y = T*x-k+S*U; 
>> F = s e t ( - 1  < U < 1) t s e t ( Y  > 0); 
>> s o l  = solvesdp (F ,  Y' *Y+u' * U )  ; 

The variable U is the decision variable and describes the 
future control trajectory. The model of the dynamic system 
is captured in the matrices T and S, and gives the prediction 
of future outputs Y ,  given the current state xk. and the 
control sequence U .  The input U is constrained and the 
output Y has to he positive. The performance measure is 
the standard unweighted quadratic cost, so the optimization 
problem solved when solvesdp is called will be a QP 

The changes in the YALMIP code above to calculate 
an explicit solution U*(+,) instead is minimal. To begin 
with, we define xk as an sdpvar variable. The explicit 
solution can only be calculated over a bounded set, so 
we constrain xk to the region - 10 <_ x p  5 10. Instead of 
using the command solvesdp, we invoke the function 
solvemp, with one additional argument to define the so 
called parametric variable, in our case X I .  The function 
solvemp serves as illl interface to MPT and returns a 
MATLAB object defining the function U * ( x ) .  

>> U = sdpvar ( N ,  1) ; 
>> x-k = sdpvar ( n ,  1) ; 
>> Y = T*x_ktS*U; 
>> F = s e t  ( - 1 0  < x-k < 10); 
>> F = F t s e t ( - 1  < U < 1) t s e t ( Y  > 0 ) ;  
>> s o l  = solvemp(F, Y' *Y+U' *U, x-k) ; 

Of-course, explicit solutions can be applied also in other 
fields than MPC. It should however be kept in mind that the 
currently available algorithms to calculate explicit LP and 
QP solutions are limited to problems with a few number of 
parametric variables, typically 5 or less. 

V. CONCLUSION AND FUTURE PERSPECTWES 

We hope that this paper has convinced the reader that 
YALMIP is a powerful tool for optimization bused algo- 
rithm development in MATLAB. The reader is encouraged 
to download YALMIP and experiment. 

YALMIP has grown substantially since its first public 
release in early 2001, hut is still evolving, The goal is to 
simplify the whole process of using optimization as an en- 
gineering tool, bring state-of-the-art solvers and methods to 

the casual MATLAB user, and, ultimately, deliver a general 
framework for control relevant optimization in MATLAB. 
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