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A Brief History of LMIs in Control Theory

The history of LMIs in the analysis of dynamical systems goes back more than 100
years. The story begins in about 1890, when Lyapunov published his seminal work
introducing what we now call Lyapunov theory. He showed that the differential equa-
tion

%.L(f) = Ax(t) (1.1)

is stable (i.e., all trajectories converge to zero) if and only if there exists a positive-
definite matrix P such that

ATP + PA <O (1.2)

The requirement P > 0, AT P+ PA < 0 is what we now call a Lyapunov inequality on
P, which is a special form of an LMI. Lyapunov also showed that this first LMI could
be explicitly solved. Indeed, we can pick any @ = QT > 0 and then solve the linear
equation AT P4+ PA = —Q for the matrix P, which is guaranteed to be positive-definite
if the system (1.1) is stable. In summary, the first LMI used to analyze stability of a
dynamical system was the Lyapunov inequality (1.2), which can be solved analytically
(by solving a set of linear equations).

The next major milestone occurs in the 1940's. Lur'e, Postnikov, and others in the Soviet
Union applied Lyapunov's methods to some specific practical problems in control
engineering, especially, the problem of stability of a control system with a nonlinearity in
the actuator. In summary, Lur'e and others were the first to apply Lyapunov's methods to
practical control engineering problems.

The next major breakthrough came in the early 1960's, when Yakubovich, Popov, Kalman,
and other researchers succeeded in reducing the solution of the LMIs that arose in the
problem of Lur'e to simple graphical criteria, using what we now call the positive-real (PR)
lemma.

The PR lemma and extensions were intensively studied in the latter half of the 1960s, and
were found to be related to the ideas of passivity, the small-gain criteria introduced by Zames
and Sandberg, and quadratic optimal control.

By 1970, it was known that the LMI appearing in the PR lemma could be solved not only
by graphical means, but also by solving a certain algebraic Riccati equation (ARE). In a
1971 on quadratic optimal control, J. C. Willems is led to the LMI

ATP + PA PB+CT
+PA+Q + >0, (1.3)
BTpy+C R
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and points out that it can be solved by studying the symmetric solutions of the ARE
ATP+ PA— (PB+CTRTY(BTP+C)+Q =0,

So by 1971, researchers knew several methods for solving special types of LMIs: direct (for
small systems), graphical methods, and by solving Lyapunov or Riccati equations. From our
point of view, these methods are all \closed-form™ or \analytic" solutions that can be used to
solve special forms of LMIs.

In a 1976 paper, Horisberger and Belanger [HB76] had remarked that the existence of a
quadratic Lyapunov function that simultaneously proves stability of a collection of linear
systems is a convex problem involving LMIs.

In 1984, N. Karmarkar introduced a new linear programming algorithm that solves linear
programs in polynomial-time, like the ellipsoid method, but in contrast to the ellipsoid
method, is also very efficient in practice. Karmarkar's work spurred an enormous amount of
work in the area of interior-point methods for linear programming.

A summary of key events in the history of LMIs in control theory is then:

v' 1890: First LMI appears; analytic solution of the Lyapunov LMI via Lyapunov
equation.

v 1940: Application of Lyapunov's methods to real control engineering problems.
Small LMIs solved by hand".

v Early 1960: PR lemma gives graphical techniques for solving another family of
LMls.

v Late 1960: Observation that the same family of LMIs can be solved by solving an
ARE.

v’ Early 1980: Recognition that many LMIs can be solved by computer via convex
programming.

v' Late 1980: Development of interior-point algorithms for LMls.

It is fair to say that Yakubovich is the father of the field, and Lyapunov the grandfather of

the field. The new development is the ability to directly solve (general) LMIs.
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Well... What is a System?

 Definition 1.

A System is anything with Inputs and Qutputs

Input; stimulus
'

Desired response

Control
system

Output; response
gl

Actual response

There should ALWAYS be Inputs and Outputs!
® If No Inputs: You can't change anything.

e |F No Qutputs: Then it doesn’t matter anyway.

z regulated outputs «——

y sensed outputs «—

Plant

«—— exogenous inputs w

«—— actuator inputs u

In Controls, we separate internal signals from external signals.

Output Signals:

e z: Output to be controlled/minimized

e y: Quiput used by the controller

Input Signals:

e w: Disturbance, Tracking Signal, etc.

e u: Qutput from controller
> |nput to actuator
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z regulated outputs «—— «—— exogenous inputs w

Plant
y sensed outputs «— «— actuator inputs w

A state-space system has the form (9-matrix representation)
z(t) = Az(t) + Byw(t) + Bau(t)
Z(f) = Clﬂl(f) + Dllw(t) + Dlz‘u(ﬁ)
y(t) = Gg:l?(f) + Doy w(t) + Dggu(t)

z(t) € R™ is the internal state.
x € Ly is the internal signal.

Z «— U
P

Yy b U
> I

The controller, K, determines how to use the signal y to get the signal wu.
e Can be dynamic: u(t) = Fa(t), 2(t) = Az(t) + L(y(t) — C(t))
® Can be static: u(t) = Fy(?).

Our job is to find the BEST K.
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F -
) > £
r >
K = PH
r = reference input Wo = Nproc wy =7
e = tracking error W3 = Nsensor U=1u
Mproc = Process noise z1=e€ Yy =r
Neensor = SENSOr Noise Zo = U Y2 = Up
Tracking Control
P r=w,
7, =¢ W_ |« Y W It e = Uy
Z, = U = 1{;’31 « W’m o+ T e =
—yJ P 9
Y K U
I —Py 0 —P, z1 =1 — Po(nproc + u)
0o 0 0 I Z2 =1
P=1r o o o
0 P I F nr
0 0 Y2 = w3 + Pﬁ(nproc + H)
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What is Optimization?

An Optimization Problem has 3 parts.

min f(z): subject to

Variables: z € F
® The things you must choose.
e [F represents the set of possible choices for the variables.
® Can be vectors, matrices, functions, systems, locations, colors...
> However, computers prefer vectors or matrices.
Objective: f(z)
e A function which assigns a scalar value to any choice of variables.
> eg. [w1,22]| = 21 —22; red = 4; et c.
Constraints: g(z) > 0; h(z) =0
® Defines what is a minimally acceptable choice of variables.
e Equality forces two things to be the same
® |nequalities force one thing to be "better” than another
> 2z is OK if g{z) > 0 and h(z) = 0.
e Constraints mean variables are not independent.

How Hard is it to Solve Optimization Problems

For Humans:
e Almost always IMPOSSIBLE (or at least tedious)
For Computers:
® Easy if the Problem is CONVEX. (Polynomial Time)
® Otherwise IMPOSSIBLE. (NP-Hard)
We will talk about this a bit more later!
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Now What is an LMI?

An Example: The Lyapunov Inequality

The system
T = Az

is stable (eigenvalues have negative real part) if and only if there exists a P > 0
such that
AP+ PA <O

YALMIP Code for Stability Analysis:

> A [<-120; -3-41; 00 -2];
> P = sdpvar(3,3);

>F = [P >= eye(3)];

> F = [F, A’*P+P*A <= 0];

> optimize(F);

If Feasible, YALMIP Code to Retrieve the Solution:
> Pfeasible = value(P);

%% Lecture0l EX 01 mfile
clc;
clear;
close all;
%% Parameters
A= [-120; -3 -41; 00 -2];
%% LMI Definition
P = sdpvar(3,3);
F=A'*P+P*A;
const=[F<0]+[P>0];
optimize (const, [],sdpsettings('solver', "sedumi'));
%% LMI Results Values
P feasible = value(P)
Pfeasible =
0.5604 0.0452 -0.0070

0.0452 0.2489 0.0348
-0.0070 0.0348 0.4116
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%% Lecture0l EX 02 mfile

clc;
clear;
close all;

%% Parameters

A= [-120; -3 -41; 30 -21;
B= [1;-2;0];

%% LMI Definition

P = sdpvar(3,1);

F=A*P-B;

const=[F<0];

optimize (const, [],sdpsettings('solver', "sedumi'));

%% LMI Results Values

P feasible = value(P)

P_feasible =
3.0000
0.5000
6.0000

%% Parameters

A= 1[-125; -3-41; 37 -21;
B= [1;-2;4];

P_feasible =
5.7500
-2.2500
1.2500

1l struct with 6 fields

Field ~ Yalue
yalmipversion ‘20200930
E|E| matlabversion '3,7.0,1190202 (R2019k)
- yalmiptime 01035
HH solvertime 0.0395
[ info ‘Successfully solved (5eDuli-1.3)'
£ problem 0.
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LM i 5

m
F(X) - FD +inFi >0
=1
x=[X1 - Xy
:Jbw

X1 +3X2 X2+}{'1 5+4X1
X9 +X1 3 4 — X1 > ()
54+4x; 4—x1 x1+x

LMl J>

% LMI Parser YALMIP
% Solver

v’ SeDuMj

v SDPT3

v' MOSEK

v'PENBMI
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kol Ol yguiuws

" sdpvar

" optimize

= sdpsettings
= value

" uncertain

= check

sdpvar

Lo o Soloww 3 25 (5l (Gogws *
ol 225 Oy Hgwd Cenyd 0
P = sdpvar(n,n,'symmetric’)
P = sdpvar(n,n,'full’)
sdpvar x y
P =sdpvar(n,n) (SYMMETRIC)
P = sdpvar(n) (SYMMETRIC)

P = sdpvar(n,n,'full’,'complex’)
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sdpsettings

solai! Solver g YALMIP sla ol yb pudald 6l yoiws

14 (50
options = sdpsettings('field’,value, field',value,...)
optimize(Constraints, Objective, options)

:Jbwo
ops = sdpsettings('solver’,'mosek’,'verbose’,0)
optimize

Sl dady Pluwo Jo> (L5 Hgiws

diagnostics = optimize(Constraints,Objective,options)

LP &l Jo> : L
X = sdpvar(length(c),1)
F = [A*x<=hb]
h =c'*x

optimize(F,h)
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value

S5 ol U puicin (G308 polio (49591 ey (Sl (G g
1wl g5k A 3o
Y=value(x)
:Jbw
x = sdpvar(2,1)
F=[-1<=x<=1]
obj = x"*x + sum(x)
optimize(F,obj)
optobj = value(obj)
optx = value(x)

Read the following paper carefully and do all of examples:

2004 1EEE International Symposium on
Computer Aided Control Systems Design
Taipei, Taiwan, September 2-4, 2004

YALMIP : A toolbox for modeling and
optimization in MATLAB

Johan Lofberg
Automatic Control Laboratory, ETHZ
CH-8092 Ziirich, Switzerland.

loefhergficontrel.ee.ethz.ch
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