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PREFACE

The earlier incarnation of this book was aimed at describing the principles and operation
of delta-sigma ( ) modulators, as used in analog-to-digital (A/D) and digital-to-analog
(D/A) converters, in simple conceptual terms, without relying on complicated mathemat-
ics. It also provided practical design information for both industrial and academic design-
ers of converters. The book was well received, dubbed the green book, and sold many
copies internationally. It was translated into Japanese, and reprinted in China. It is cited
currently about 170 times annually in the literature. In view of this continued popularity,
why did we embark on creating this new avatar?

The answer is that twelve years have gone by since the green book was published.
The interest of converter designers has shifted significantly during this period, in the
wake of many new applications for data converters at the extreme ends of the frequency
spectrum. Continuous-time ADCs with GHz clocks, both for lowpass and bandpass
signals, were required for wireless applications. At the other extreme of the spectrum,
multiplexed ADCs with very narrow (sometimes only 10 Hz wide) signal bands, but very
high accuracy, were needed e.g. in the interfaces of biomedical or environmental sensors.
Often, the optimal converter for these specifications is the incremental ADC, which is
basically a ADC that is periodically reset and restarted.

To reflect the changed needs of designers, this book includes much new material on
both theory and design techniques. The emphasis of topics in the existing material has also
been changed. New chapters have been added on the cascade (MASH) architecture, on

Understanding Delta-Sigma Data Converters, R. Schreier and G. C. Temes, IEEE Press and Wiley-Interscience,
2005.
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DAC mismatch effects and their mitigation, as well as expanded chapters on continuous-
time ADCs and their nonidealities, on circuit design techniques for both sampled-data
and continuous-time ADCs, and on incremental ADCs.

During the past decade, several new books that deal with special aspects of ADCs
have been published. A recent book by de la Rosa and del Rio provides an encyclopedic
collection of practical information on ADCs. It is a valuable addition to the literature,
highly recommended for designers. By contrast, the purpose of our work (as the title
implies) is to give a basic understanding of the operation of these converters, and to provide
general design techniques. We can think of several possible scenarios for using this book
in a classroom setting. Chapters 1 through 6 form the core theory. A semester-long course
focusing on discrete-time ADCs should, in addition, cover chapters 7, 12, 13 and 14.
A course focusing on CT Ms would cover Chapters 1-6, 8-11, and 14.

Several colleagues, from academia and industry, reviewed drafts of the book at var-
ious stages. It is our pleasure to acknowledge their assistance. Thanks are due to Trevor
Caldwell (Analog Devices), Rakshit Datta (Texas Instruments), Ian Galton (University of
California at San Diego), John Khoury (Silicon Laboratories), Victor Kozlov (Analog De-
vices), Saurabh Saxena (Indian Institute of Technology Madras), and Nan Sun (University
of Texas at Austin). Their careful and astute comments have, in our opinion, helped im-
prove the quality of the book. Amrith Sukumaran’s editorial assistance is also appreciated.

To stick to limits imposed by space and time, some topics had to be omitted altogether,
while others had to be given short shrift. Nevertheless, we hope that this book will be useful
both for teaching and for self-education purposes.

SHANTHI PAVAN

Chennai, India

RICHARD SCHREIER

Toronto, Canada

GABOR C. TEMES

Corvallis, USA

CMOS Delta-Sigma Converters, J. M. de la Rosa and R. del Rio, IEEE Press and Wiley-Interscience, 2013.



CHAPTER 1

THE MAGIC OF DELTA-SIGMA
MODULATION

The aim of this introductory chapter is to motivate the need for oversampling data convert-
ers, and to give a bird’s-eye view of the topics covered in this book. Towards the end of the
chapter, we give a brief overview of the origins of data conversion and trends in this
exciting area.

1.1 The Need for Oversampling Converters

Computational and signal processing tasks are now performed predominantly by digital
means, since digital circuits are robust and can be realized by extremely small and sim-
ple structures that can in turn be combined to obtain very complex, accurate, and fast
systems. Every year, the speed and density (of transistors) of digital integrated circuits
(ICs) increase, thereby enhancing the dominance of digital methods in almost all areas of
communications and consumer products. Since the physical world nevertheless remains
stubbornly analog, data converters are needed to interface with the digital signal process-
ing (DSP) core. As the speed and capability of DSP cores increases, so too must the speed
and accuracy of the converters associated with them. This presents a continual challenge
to the lucky few engineers dedicated to the design of data converters!

Figure 1.1 illustrates the block diagram of a signal processing system with analog
input and output signals, plus a central digital engine. As shown, the analog input sig-
nal (usually after some amplification and filtering) enters an analog-to-digital converter

1
Understanding Delta-Sigma Data Converters, Second Edition. By Shanthi Pavan, Richard Schreier, and Gabor C. Temes. 
© 2017 by The Institute of Electrical and Electronics Engineers, Inc. Published by John Wiley & Sons, Inc. 
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Figure 1.1 ADCs and DACs interface the real world to the virtual world.

(ADC), that transforms the input signal into a digital data stream. This stream is processed
by the DSP core, and the resulting digital output signal is reconverted into analog form by
a digital-to-analog converter (DAC). The DAC output is usually also filtered and amplified
to obtain the final analog output signal.

Data converters (both ADCs and DACs) can be classified into two main categories:
Nyquist-rate and oversampled converters. In the former category, there exists a one-to-one
correspondence between the input and output samples. Each input sample is separately
processed, regardless of the earlier input samples; in other words, the converter has no
memory. Applying a digital input word containing bits b1 b2 b to a Nyquist-rate
DAC ideally results in an analog output

Vout Vref (b12 1 b22 2 b 2 ) (1.1)

where Vref is the reference voltage, regardless of any previous input word. The accuracy
of conversion can be evaluated by comparing the actual value of V with the ideal value
given by (1.1).

As the name implies, the sampling rate f of a Nyquist-rate converter can be as low as
Nyquist’s criterion requires, i.e., twice the bandwidth B of the input signal. (For practical
reasons, the actual rate is usually somewhat higher than this minimum value.)

In most cases, the linearity and precision of a Nyquist-rate converter is determined
by the matching accuracy of the analog components (resistors, current sources, or capaci-
tors) used in the implementation. For example, in the N-bit resistor-string DAC shown in
Figure 1.2, the resistors must have a relative matching error less than 2 to guarantee an
integral nonlinearity (INL) less than 0.5 LSB. Similar matching requirements prevail for
ADCs and DACs constructed from current sources or switched-capacitor (SC) branches.

INL is simply the difference between the actual output and the ideal output.
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Vref

V

LSB
LSB 1

MSB

Figure 1.2 A resistor-string DAC. LSB denotes the least significant bit and MSB the most significant
bit of the digital input.

Practical conditions restrict the matching accuracy to about 0.02%, and hence the effective
number of bits (ENOB) to about 12, for such converters.

In many applications (e.g., digital audio), higher resolution and linearity are required,
even as much as 18 or 20 bits. The only Nyquist-rate converters capable of such accuracy
are the integrating or counting ones. These, however, require at least 2 clock periods to
convert a single sample, and hence, they are too slow for most signal processing applica-
tions.

Oversampling data converters are able to achieve over 20 ENOB resolution at rea-
sonably high conversion speeds by relying on a trade-off. They use sampling rates much
higher than the Nyquist rate, typically higher by a factor between 8 and 512, and generate
each output utilizing numerous preceding input values. Thus, the converter incorporates
memory elements in its structure. This property destroys the one-to-one relation between
input and output samples. With oversampling converters, only a comparison of the com-
plete input and output waveforms can be used to evaluate the converter’s accuracy, either
in the time or in the frequency domain.

A common measure of a converter’s accuracy is the signal-to-noise ratio (SNR) for a
sine-wave input. The relationship between ENOB and SNR (expressed in dB) for an ideal
Nyquist converter with a full-scale sine-wave excitation is SNR 6 02 ENOB 1 76. The
inverse relationship is often applied to oversampling converters to convert the SNR into an
effective number of bits.

As will be shown in later chapters, the implementation of oversampling converters
requires a considerable amount of digital circuitry, in addition to some analog stages. Both
need to be operated faster than the Nyquist rate. However, the accuracy requirements on the
analog components are relaxed compared to those associated with Nyquist-rate converters.
The price paid for high accuracy thus includes faster operation and added digital circuitry;
both of these are getting cheaper as digital IC technology advances. Hence, the trade-off
offered by converters continues to improve. As a result, they are gradually taking over
in many applications previously dominated by Nyquist-rate converters.

1.2 Nyquist and Oversampling Conversion by Example

To better understand the difference between Nyquist and oversampled analog-to-digital
conversion, consider the following illustrative examples.
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1.2.1 The Coffee Shop Problem

A student visits a coffee shop on campus every morning to get her fix of caffeine, so that
she can get through the day. A coffee grande at the campus cafe costs $3.47. What are the
ways in which the student can pay this rather inconvenient sum? (The old-fashioned cafe
does not accept credit cards). The “Nyquist” way of paying would be for the student to
carry coins of the right denominations every day. She could, however, pay with a $5 bill and
expect to shop assistant to return $1.53. The cafe, unfortunately, is severely short of small
coins, and the shop assistant is not in a position to entertain this practice. Nevertheless, the
shop assistant and the student come to an understanding that will allow the latter to pay
with a $5 bill, while at the same time not under or overpay the cafe. It exploits the fact that
the student visits the cafe every day. This is the way, described below.

The agreement between the two parties is the following. On any day, if the student
owes the cafe more than $2.50, she hands a $5 bill to the shop assistant. When instead, she
owes less than $2.50, she pays nothing. The student keeps track of how much she owes the
cafe. The transactions for the first three days are shown in Figure 1.3.

Paid : $5

Owes : $1 53

Paid : $0

Owes : $1 94

Owes : $1 53 Owes : $1 94

Owes : $0 41

$3 47 $3 47

Paid : $5

$3 47

Day 1 Day 2 Day 3

Figure 1.3 The way of paying $3.47 for a coffee grande, with only $5 bills.

On the first day, the student pays $5, as agreed upon. She notes, at the end of the day,
that she owes $1.53 to the cafe. The minus sign indicates that the student has overpaid.

While ordering at the cafe on the second day, the student reminds the shop assistant
of the overpayment the previous day. The student needs to only pay $(3.47 1.53)=$1.94.
As agreed upon, she pays nothing, again noting that the cafe is owed $1.94.

On the third day, the student needs to pay $5.41, and as per the understanding with the
shop assistant, hands over a $5 bill. She notes that the cafe is owed $0.41. This continues
every day ad infinitum.

u

z 1

Moving
Average

Filter
û

Figure 1.4 The algorithm of Figure 1.3. The u represents the cost of a coffee grande, and [n] is
the payment made by the student on the nth day.

When the scheme above is cast into a signal flow diagram, Figure 1.4 results. In the
figure, u presents the price of the coffee grande; [n], which is the input of the quantizer,
represents the total amount owed by the student while ordering on the nth day; [n], which
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is the quantizer output, represents the students payment on the nth day, and takes the value
0 or 5. Therefore, ( [n] [n]) is the amount owed by the student to the cafe after making
the payment on the nth day. The z 1 block in Figure 1.4 denotes a delay of one day.

20 40 60 80 100
0

1

2

3

4

5

u 3 47

n

u
,

ru
n

n
in

g
a

ve
ra

g
e

o
f

v

Figure 1.5 The running average of approaches u for large n.

Figure 1.5 shows the running average of , given by

1
n

1
[k] (1.2)

The running average represents the price paid by the student per unit coffee grande, on
average during the preceding days. As n becomes large, we see it approaches u, which is
$3.47.

In the beginning of this discussion, it might have seemed surprising that the student
would be able to pay an inconvenient sum of $3.47 with only $5 bills. The way exploits
the fact that u remains substantially the same from sample to sample. It uses feedback to
make approximate u on average. An individual sample of has no meaning – one can
determine u from only by averaging many samples. Why does this scheme work? It is
perhaps easier to see this by redrawing the diagram of Figure 1.4 as in Figure 1.6. We
see that [n] is the total amount owed by the student (from the beginning of time) after
grabbing her coffee for the day. As long as this is bounded, it must follow that the average
of the accumulator’s ( ) input must be close to zero. Since the input to the accumulator is
the difference ( ) between the input and feedback sequence, it should follow that and u

would be equal, on average. Thus, by embedding a (very coarse) 2-level quantizer into a
negative feedback loop, and sufficiently averaging the output sequence, the digital estimate
û can be a very good representation of u.

u 1
1 1

z 1

Moving
Average

Filter
û

Figure 1.6 The system of Figure 1.4, redrawn.
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The feedback loops of Figures. 1.4 and 1.6, both equivalent, represent a first-order
modulator. The first structure is called the error-feedback structure, while the latter is

the more traditional (and immediately recognizable) error accumulating structure.

1.2.2 The Dictionary Problem

A student visiting a bookstore begins to wonder about the thickness of that venerable tome,
the Webster’s International Dictionary of the English Language. An immediate way of
finding the thickness is to get hold of a 6-inch ruler (this is a bookstore, after all) and
measure the dictionary’s thickness, as illustrated in Figure 1.7. Since the ruler has markings
at every eighth of an inch, the worst-case error in measuring the thickness would amount to
one-sixteenth of an inch. This is the “Nyquist” way, where the distance between successive
marks on the ruler would correspond to the LSB. Measurement uncertainty (quantization
error, in data-conversion parlance) can only be reduced by using a ruler with more finely
spaced markings. The effort involved in making such a ruler is decidedly higher, not to
mention the difficulty in discerning the marking that best corresponds to the height of the
tome. Note, however, that the measurement is made in one shot – meaning that one use of
the ruler is sufficient for measurement.

u 3 42 in 1
2
3
4
5

Figure 1.7 Measuring the thickness of Webster’s Dictionary the Nyquist way.

The student finds focusing on the finely spaced levels a strain on the eyes, and he
begins to wonder if it is at all possible to measure the book’s thickness without having to
look at the marks on the ruler at all. In other words, is it possible to find the thickness
to within one-sixteenth of an inch (or even better) using only the fact that this is a 6-inch
ruler? At first, this may seem like an impossible task – how is it possible to measure to
within a fraction of an inch with a scale whose only “marking” is 6 in?

The student, being resourceful, exploits the fact that the bookstore has any number
of copies of the Webster’s Dictionary that he can put at his disposal. He contrives the
following algorithm, which, he reasons, should allow him to determine the dictionary’s
thickness to arbitrary precision. The algorithm involves a sequence of operations, and
proceeds as follows as illustrated in Figure 1.8.

Markings are made on the wall, from the floor up, at intervals of 6 inches using the (6-
inch) ruler. The student places a copy of the Webster’s Dictionary on the floor. The action
of placing the book causes the level corresponding to the top of the stack of dictionaries
(which contains just one instance at this time) to cross the lowest (6-inch) mark on the wall,
which is at the floor level. The result of this experiment, denoted by , is decreed to be 6
(corresponding to the 6-inch ticks on the wall).

A copy of Webster’s is placed on the first, as shown in Figure 1.8(b). Since the action
of adding the second copy causes the height of the stack to cross a marking on the wall,
the result of this experiment is also deemed to be 6. This mode of operation continues ad

infinitum. at the end of every step, therefore, is 6 if the addition of a new copy causes
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n 4 [4] 6 n 5 [5] 0 n 6 [6] 6

n 1 [1] 6 n 2 [2] 6 n 3 [3] 0

6 in

12 in 12 in

6 in

12 in

6 in

Figure 1.8 Measuring the thickness of Webster’s Dictionary the way.

the stack to cross a new 6-inch mark, and zero otherwise. Denoting the thickness by u, the
height of the stack in the nth instance is given by

1
u nu (1.3)

This is compared with the next 6-inch mark on the wall, whose height is given by

1

1
[k] (1.4)

Thus,

[n]
6 1 u 1

1 [k]
0 otherwise

The student argues that at the end of n operations,

0
1

[k]
1

u 6 (1.5)

since the height of the stack and the mark immediately above the top of the stack can differ
by at most 6 inches. This means that

1
n

1
[k]

6
n

u
1
n

1
[k] (1.6)

An estimate of u can therefore be obtained by simply averaging the sequence [n]. As n

approaches infinity, the average of the output sequence approaches the true height of our
venerable tome, which is about 3.42 inches.

When the student’s scheme is translated into the language of electrical engineering,
the diagram shown in Figure 1.9 results. The input u is summed in a delay-free integrator.
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1
1 1u

1

1 1

Moving
Average

Filter
û

Figure 1.9 Equivalent representation of the algorithm in Figure 1.8.

The output sequence is summed ( ) using a delayed integrator, since the current decision
depends on the sum of the previous decisions. The difference ( ) between the two accu-
mulated results is quantized to one of two levels (0 and 6 in our example). The resulting
output sequence is averaged (by a moving-average filter) to estimate the input u. The
averaging filter acts on a digital input and is, therefore, a digital filter.

0 10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

3

3.5

4

u
û

n

u

û

Figure 1.10 First 100 samples of the output of the moving average filter in Figure 1.11, for
u 3 42. A 64-tap filter (with all taps equal) is assumed.

Figure 1.10 shows the first hundred samples of û at the output of a 64-tap moving-
average filter. In steady state, û happens to be within 0.05 inches of u. At first sight, it
indeed seems remarkable that one can resolve to a small fraction of an inch with a scale
marked only at 6 inches!

It is instructive to compare the Nyquist and ways of measurement. The former
is a one-shot process, with the accuracy of measurement depending on the fineness and
precision of the marks on the ruler. The latter, in contrast, is an iterative process. It involves
feedback, since the outcome [n] of the nth iteration depends on the results of previous
experiments. The method relies on the fact u does not change between successive
iterations. This means that u is heavily oversampled. Moreover, [n] is not representative
of u; u can only be inferred by averaging the outcomes of a large number of iterations.
Measurement accuracy generally improves as n is increased. Averaging 1000 samples
reduces the error to 0.006 inches.

A practical problem with the realization of Figure 1.9 is that the outputs of both in-
tegrators keep increasing with n. In our bookstore example, the pile of dictionaries in
Figure 1.8 would risk hitting the ceiling due to lack of headroom. Likewise, electronic
integrators have limits on their maximum allowable output. This can be circumvented by
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simply moving the integrators into the loop, as shown in Figure 1.11. In the figure, û is
a digital representation of u, and the system converts the continuous valued input u into a
quantized output. This is achieved by embedding a coarse quantizer (which, in our exam-
ple, has only two levels – 0 and 6 inches) in a negative feedback loop. The feedback loop
of Figure 1.11 is called a modulator (or converter). More precisely, it represents
a first-order, 2-level modulator. The integrator, whose output is quantized, is often
referred to as the loop filter.

The discussion in this section was a (hopefully) gentle introduction to the basic idea
behind modulation. A more detailed development of the first-order loop, its analy-
sis and alternative ways of realizing the same functionality are given in Chapter 2.

u 1
1 1

z 1

Moving
Average

Filter
û

Loop filter

Figure 1.11 Addressing “headroom problems” of the system of Figure 1.9 by moving the integrators
into the loop. Averaging yields an estimate û of u.

The reader might wonder why the measurement must proceed in the iterative fashion
shown in Figure 1.8. Why not stack 64 dictionaries, and measure the height of the stack
(to the nearest 6 inch mark) and divide by 64? To understand this, we denote the error
introduced by the quantizer of Fig 1.11 in the nth iteration by e[n]. It is easy to see that

[n] u[n] e[n] e[n 1] (1.7)

The output of the M-tap moving-average filter (with weights being equal) is given by

û
1
M

1
[k] u

1
M

(e[r M 1] e[r]) (1.8)

It is easy to see that û is what one would obtain by stacking up M dictionaries, measuring
the height of the stack to the nearest 6 inches, and dividing the result by M . From the
equation above, we observe that the estimation error in û is due to the e in the first and last
of the 64 (assuming M 64) samples being processed by the moving-average filter. This
suggests that quantization error can be reduced by weighting [n] non-uniformly – that
is, by attaching more importance to the middle set of samples than those toward the end.
This intuition is confirmed by filtering the output sequence of the modulator with a 64-tap
moving-average filter with a triangular impulse response. From Figure 1.12, we see that
the peak-to-peak excursion of the output of such a filter is much smaller than that in the
case where all the samples of [n] are equally weighted. Thus, there is merit to observing
the height of the stack every time an additional dictionary is added, as this enables the
use of arbitrary moving-average filters. Recall that measuring the height of a stack of
64 dictionaries (to the closest 6-inch mark) and dividing by 64 is equivalent to uniformly
weighting the samples of . To summarize, there is more to choosing the post-filter that
processes the modulator’s output than simply averaging the output. To understand how
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3.41

3.43

3.45

3.47

u
û

n
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triangularly weighted

Figure 1.12 Outputs of moving-average filters with equal weights, and a triangularly weighted
response.

one designs a post-filter, it is helpful to examine a modulator in the frequency domain,
which we will do going forward. Before that, we wish to draw the reader’s attention to the
following.

The example above considered the modulator’s input u to be constant. In practice,
the input to be digitized has a nonzero bandwidth (which is much smaller than the sam-
pling rate). Then, the output of the digital post-filter (which is a sequence at the sampling
rate) can be downsampled, so that the output sample rate can equal the Nyquist rate corre-
sponding to the input signal. Figure 1.13 shows the system model of an ADC employing

u
1

1 1
Digital
Filter û

Decimator

e

Figure 1.13 System model of an ADC with a first-order modulator.

a first-order modulator. The delay element in the feedback path of the modulator of
Figure 1.11 has been pushed into the forward path. The (benign) consequence of this is
to delay the input by one sample. The combination of the the digital post-filter and down-
sampler is called the decimation filter or decimator.

The output noise due to the quantization error in the modulator is q[n] e[n]
e[n 1]. In the z-domain, this becomes Q(z) (1 z 1)E(z), and in the frequency domain,
after z is replaced by e , the power spectral density (PSD) of the output noise is found to
be

S ( ) 4 sin2
2

S ( ) (1.9)

Here, S ( ) is the one-sided PSD of the quantization error (noise) of the internal ADC.
For “busy” (i.e., rapidly and randomly varying) input signals, one may approximate e with
white noise of mean-square value 2 12, where is the step size of the quantizer, and thus
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obtain

S ( )
2

12
(1.10)

The filtering function (1 z 1) is called the noise transfer function (NTF). The squared
magnitude of the NTF as a function of frequency is illustrated in Figure 1.14. As the

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

2 ( f f )

NT
F

2

Figure 1.14 Noise-shaping function for the modulator shown in Figure 1.13.

figure shows, the NTF of the modulator is a highpass filter function. It suppresses e at
frequencies around 0, but the NTF also enhances e at frequencies around .

We introduce next the oversampling ratio

OSR
f

2 f
(1.11)

where f is the maximum signal frequency, which is the signal bandwidth. OSR defines
how much faster we sample in the oversampled modulator than in a Nyquist-rate converter.

It turns out that the in-band component of quantization noise at the output of the
modulator is given by

q2
2

3
e2

OSR3 (1.12)

As expected, the in-band noise decreases with increasing OSR. However, this decrease is
relatively slow; doubling the OSR reduces the noise only by 9 dB, and hence it enhances
the ENOB by only about 1.5 bits.

The discussion in this chapter is intended merely as an introduction, a whetting of
the appetite – the topics of sampling, oversampling and the first-order modulator are
covered in detail in Chapter 2.

1.3 Higher-Order Single-Stage Noise-Shaping Modulators

As the reader might have anticipated, a way to increase the resolution (i.e., the ENOB) of
a modulator is to use a higher-order loop filter. By adding another integrator and feed-
back path to the modulator of Figure 1.13, the structure of Figure 1.15 results. Linearized
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1
1 1u

1

1 1

e

Figure 1.15 A second-order modulator.

analysis yields
V (z) z 1U (z) (1 z 1)2E(z) (1.13)

This indicates that the NTF is now (1 z 1)2 in the z-domain, which applies a shaping
function of (2 sin( 2))4 to the PSD of e. It follows that the in-band noise power is (to a
good approximation for OSR 1)

q2
4e2

5 OSR5 (1.14)

Doubling OSR, therefore, results in about 2.5 bits of additional resolution. This is a much
more favorable trade-off than that of the first-order modulator. A more detailed analysis
of second-order modulators, and alternative ways of realizing them, are discussed in
Chapter 3.

In principle, by adding more integrators and feedback branches to the loop, even
higher-order NTFs can be obtained. For an Lth-order loop filter resulting in NTF(z)
(1 z 1) , the in-band noise power is approximately

q2
2 e2

(2L 1) OSR2 1 (1.15)

and the number of bits added to the resolution by doubling the OSR is given by (L 0 5).

From the discussion above, it appears as if using a loop with an appropriately
chosen (very high-order) NTF can attain arbitrarily high SNRs, even for small OSR. This
sounds too good to be true, and as the wise reader should suspect, something that sounds

too good to be true is probably too good to be true. It turns out that for high-order loops,
stability considerations, which have thus far been ignored, reduce the achievable resolu-
tion to a lower value than that given by the equations above. For high-order single-bit
modulators, the difference is substantial, amounting to more than 60 dB for a fifth-order
modulator. Higher-order modulators, their stability, trade-offs involved in their design,
and various means of realizing them will be discussed in detail in Chapter 4.

1.4 Multi-Stage and Multi-Quantizer Delta-Sigma Modulators

The philosophy behind using a high-order loop to suppress in-band quantization noise is to
divide noise by a large loop-gain, obtained by incorporating more integrators in the loop.
An alternative strategy to accomplish the same objective is to cancel the quantization error
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by measurement and subtraction. It turns out that this approach eases the stability prob-
lems associated with high-order modulators. The resulting structures are called cascade
modulators, and also referred to as multi-stage or MASH (for Multi-stAge noise-SHaping)
modulators. This, and other techniques based on this fundamental idea, form the subject
of Chapter 5.

The basic concept behind a cascade modulator is illustrated in Figure 1.16. The output

1
L0

L1

u

H1

H2

1

e1

22
L0

L1

e2

e1

Figure 1.16 A multi-stage delta-sigma modulator.

signal of the first stage is given by

V1(z) STF1(z)U (z) NTF1(z)E1(z) (1.16)

where STF1 and NTF1 are the signal and noise transfer functions, respectively, of the first
stage. The second stage is added to improve the SNR beyond what NTF1 can provide.

As shown in Figure 1.16, the quantization error e1 of the input stage is found in
analog form by subtracting the input to its internal quantizer from its output. e1 is then fed
to another loop forming the second stage of the modulator, and converted into digital
form. Hence, the output signal of the second stage in the z-domain is given by

V2(z) STF2(z)E1(z) NTF2(z)E2(z) (1.17)

where STF2 and NTF2 are the signal and noise transfer functions, respectively, of the
second stage. The digital filter stages H1 and H2 at the outputs of the two modulator
loops are designed such that in the overall output of the system, the first-stage error e1 is
canceled. By the equations above, this is achieved if the condition

H1(z)NTF1(z) H2(z)STF2(z) (1.18)

holds. The simplest (and usually most practical) choice for H1 and H2 that satisfies (1.18)
is H1 k STF2 and H2 k NTF1, where k is constant chosen to give unity signal gain.
Since STF2 is often just a delay, H1 is easily realized. The overall output is then given by

V (z) k STF1(z)STF2(z)U (z) k NTF1(z)NTF2(z)E2(z) (1.19)
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In a typical case, both stages of the MASH modulator may contain a second-order loop,
and their transfer functions may be given by STF1 z 1, STF2 0 5z 2 and NTF1
NTF2 (1 z 1)2. Choosing k 2, the output we obtain is then

V (z) z 2U (z) 2(1 z 1)4E2(z) (1.20)

Thus, the noise-shaping performance is essentially that of a fourth-order single-loop con-
verter, but the stability behavior is that of a second-order one.

If the condition (1.18) is not exactly satisfied, for example, due to imperfections in the
realization of the analog transfer functions, then E1(z) will appear at the output multiplied
by k [STF2NTF1 NTF1STF2 ], where the subscript a denotes the actual value of the
analog transfer function. This is not surprising, since the efficacy of any technique based
on cancellation is always degraded by mismatch. As will be shown in Chapter 5, mismatch
can result in a serious deterioration of the noise performance of the converter.

1.5 Mismatch Shaping in Multi-Bit Delta-Sigma Modulators

ADC

DAC

u
1

1 1

e

Figure 1.17 The quantizer in a modulator is implemented as a cascade of ADC and DAC.

A quantizer is implemented as a cascade of an ADC and DAC, as shown in Fig-
ure 1.17. The DAC appears in the feedback path of the modulator, and its nonlineari-
ties result in comparable nonlinearities for the overall conversion. This occurs because the
in-band part of the DAC output signal is forced by the feedback loop to follow the input
signal u very accurately. Hence, if the DAC is nonlinear, its input will be distorted to give
an accurate output. Since the DAC input is the output of the converter, the converter output
is distorted.

It was this fact that forced early designers of modulators to use single-bit internal
DACs in the loops. A single-bit DAC has the immensely important virtue of inherent

linearity. Since the input to a one-bit DAC only takes on two values, the transfer charac-
teristic of the DAC can be represented by two points in the input–output plane. Thus, a
straight line that passes through those points models a 1-bit DAC exactly. In other words,
the DAC is exactly described by an equation of the form k offset, where k and
offset are constants. Since a system that obeys such a model does not introduce distortion,
a 1-bit DAC is said to be inherently linear.

In contrast, single-bit ADCs (which are essentially comparators) have an ill-defined
gain factor, as will be shown in Chapter 2. Also as Chapters 3 and 4 will show, loops
containing one-bit quantizers must remain stable over a wide range of loop gains. This



CONTINUOUS-TIME DELTA-SIGMA MODULATION 15

consideration results in a reduction of the allowable input signal swing, and hence a reduc-
tion in the achievable SNR.

For a multi-bit quantizer, the loop is inherently more stable because the quantizer
gain is well-defined, and its no-overload range is increased. In fact, linear analysis can
be used to design the modulator so that its stability is guaranteed. Furthermore, since the
quantization noise decreases by 6 dB for each bit added to the quantizer, and since aggres-
sive high-order noise-shaping functions can used, multi-bit modulators can have very high
ENOB even at low OSR values. Hence, there is strong motivation to solve the problem
of DAC nonlinearity inherent in the use of multi-bit quantization. While brute-force tech-
niques, such as element trimming, have been used earlier, the techniques currently in favor
use auxiliary digital circuitry to manipulate the elements of the DAC so as to reduce the
in-band portion of the error signal introduced by DAC nonlinearities. These techniques
are conceptually very similar to the noise shaping used in modulators, and are often
described with the term mismatch shaping. As with noise shaping, the effectiveness of
mismatch shaping increases with increasing OSR. For very low OSR values (OSR 8),
digital techniques can be used to determine and then correct the nonlinearities of the DAC.

The fundamental principles behind addressing DAC mismatch in multi-bit delta-
sigma modulators will be covered in detail in Chapter 6.

1.6 Continuous-Time Delta-Sigma Modulation

At the beginning of this chapter, we saw that an ADC converts a continuous-time analog
signal (which is continuous in time and amplitude) to a digital one (where time and am-
plitude are quantized). A discrete-time modulator acts on a sampled version of the
analog signal, and its role is to quantize these samples. A continuous-time modulator
(CT M), on the other hand, works with the continuous-time input u(t). There are many
ways of understanding a CT M – and the development below is appropriate for an intro-
ductory chapter such as this. A more general development, building on previous chapters
discussing discrete-time design, is given in Chapter 8.

Figure 1.18(a) shows a first-order lowpass filter. The opamp is ideal. Regardless of the
(continuous-time) input u(t), the average capacitor current i (t) must be zero – otherwise,
the voltage across the capacitor would become unbounded. Thus, i1(t) i2(t), which
results in u(t) (t).

Next, the output of the opamp is sampled at a rate f , as shown in Figure 1.18(b).
The resulting sequence [n] is zero-order held, before being fed back through the resistor.
Assuming that the feedback loop is functional, the average capacitor current is still zero,
meaning that the average of u(t) is still equal to the average of (t). The latter now refers
to the output of the ZOH. (t), however, equals the average value of the sequence [n]. By
inserting a sampler into the loop, therefore, we are now in a position to relate the average
of the input waveform u(t) to the average of the output sequence. Now, if the input signal
varies very slowly (in relation to the sampling period), u(t) and its local average are largely
the same. Under this circumstance, u(t) [n]. Half the battle of analog-to-digital
conversion has been won – we have accomplished discretization of time.

The next progression is to quantize [n] before feeding it back through the ZOH. As-

suming the loop is still stable, and that u(t) is slowly varying, u(t) is still approximately
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Figure 1.18 (a) A first-order lowpass filter. (b) Sampling the opamp’s output and feeding back the
sampled sequence using a zero-order hold (ZOH). (c) Quantizing the output sequence before feeding
it back.

equal to [n]. [n] is now not only discrete in time, but also in amplitude. It can, there-
fore, be represented in digital form. Note that, as in the discrete-time case, it is only the
average of [n] that approximates u; the individual samples have no meaning in isolation.
The system of Figure 1.18(c) is a first-order CT M – its output sequence has to pro-
cessed by an appropriately chosen digital filter, so as to properly average [n] and yield
an estimate of u(t). As in the discrete-time case, higher-order loop filters can better reject
in-band quantization noise.

It is instructive to examine the output of the first-order CT M when u(t)
cos(2 f t), that is, for a sine wave whose frequency equals the sample rate . Since the
virtual ground voltage is zero, and u(t) 0, it follows that i1(t) 0. This means that
i2(t) has to be zero. This, in turn, implies that [n] 0, indicating that the CT M does
not respond to an input at its sampling frequency! This remarkable property of a CT M
distinguishes it from all other ADC families, where an input at f cannot be distinguished
from an input at dc. This ability of a CT M to respond differently to inputs at dc and
f is referred to as implicit anti-aliasing. Chapter 8 gives a detailed discussion of the
fundamentals of continuous-time modulation.

However, a CT M is the victim of many non-idealities – excess delay in the quan-
tizer, time-constant variations in the loop filter, clock jitterand so forth. Chapter 9 analyzes
the effects of these nonidealities and how they may be circumvented. Chapter 10 gives
circuit design considerations for the blocks that make up a CT M.

The block diagram of a generic single-loop CT M is shown in Figure 1.19. It is
a bag of contrasts. The loop filter processes u(t) and (t), and it should be linear and
time-invariant. The output of the filter is sampled and quantized. Sampling is a time-

When a Nyquist converter without an anti-alias filter up front is subject to a sinusoidal input at its sampling
frequency, the output is a dc sequence, indicating that the tone at aliases to dc.
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Figure 1.19 Block diagram of a generic single-loop CT M.

varying operation. The quantizer is nonlinear; in fact, it is extremely so, due to the abrupt
steps in its transfer curve. To add to the excitement, all these blocks are enclosed in a
negative-feedback loop. Thus, a CT M may be described as a part linear, part nonlinear,
part time-invariant, part time-variant, part continuous-time, and part discrete-time system
incorporating negative feedback. Understanding a CT M, therefore, exposes one to a
variety of topics – from signal processing and systems theory to precision circuit design.
Apart from its obvious pedagogical value, a CT M is also highly relevant in practice. It
is what we would like to refer to as a system for all seasons.

1.7 Bandpass Delta-Sigma Modulators

Up to now, it was assumed that the signal energy was concentrated in a narrow band at low
frequencies, centered at dc. In applications such as RF communication systems, the signal
is concentrated in a narrow band of width f around a center frequency f0, where f is
much smaller than f while f0 is not. In such cases, modulation may still be effec-
tive, but now the noise transfer function NTF must have a bandstop, rather than highpass,
character, with zeros located at or around f0.
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f f f f

Figure 1.20 Conceptual output spectra for (a) lowpass and (b) f 4 bandpass modulators.

Figure 1.20 compares the conceptual output spectra of a lowpass and a bandpass
modulator. A simple way to obtain the NTF of a bandpass modulator is to find

first an appropriate lowpass NTF, and then perform a z-domain mapping on it. For exam-
ple, the transformation z z2 maps the frequency range around dc (i.e., z 1 ) to the
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ranges around f 4 (i.e., z j). Hence, the resulting NTF will have small values near
f f 4, and will suppress the quantization noise there. This bandstop noise-shaping
makes it possible to achieve a high signal-to-noise ratio (SNR) for signals whose energy is
restricted to frequencies near f 4.

Note that the mapping doubles the order of the lowpass NTF and transforms the zeros
of the NTF from near z 1 to the vicinity of the points z j, as illustrated in Figure 1.21.
Other techniques for finding the NTF of bandpass modulators will be discussed in

2 2

(a) (b)

OSR 2

f

f

f

Figure 1.21 Pole-zero locations of (a) a lowpass NTF and (b) a bandpass NTF.

detail in Chapter 11 along with circuit design techniques for bandpass modulators.

1.8 Incremental Delta-Sigma Converters

In our discussions so far, we evaluated the in-band quantization noise of a delta-sigma
modulator by integrating its spectral density over the signal bandwidth. This is justified
only if the digital filter following the modulator has a brick-wall response. Such a require-
ment can only be approximated in practice, and like all sharp filters, the impulse response
of the filter can be extremely long. This means that the modulator and accompanying
post-filter have significant memory. This makes a conventional modulator unsuitable
in applications where the ADC is multiplexed among multiple sensors, or when the ADC
has to be operated in an intermittent fashion.

A different ADC scheme that applies the noise-shaping algorithm of ADCs, but
only within the sample-by-sample operation of a Nyquist-rate ADC, is the incremental

ADC. This family of ADCs is closely related to their conventional cousins, and it forms
the subject of Chapter 12.

1.9 Delta-Sigma Digital-to-Analog Converters

The motivation for using modulation to realize high-performance DACs is the same
as for ADCs: it is difficult, if not impossible, to reliably achieve an untrimmed linear-
ity and accuracy better than about 14 bits for DACs operated at the Nyquist rate. With

modulation, this task becomes feasible. A DAC system is illustrated in Figure 1.22.
By operating a fully digital modulator loop at an oversampled clock rate, a data stream
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Figure 1.22 A DAC system.

with (say) 18-bit word length can be changed into a high-speed single-bit digital signal
such that the baseband spectrum is preserved. The large amount of truncation noise gen-
erated in the loop is shaped in order to make the in-band noise negligible. The single-bit
digital output signal can then be converted with high (ideally, perfect) linearity into an ana-
log signal using a simple two-level DAC circuit. The out-of-band truncation noise can be
subsequently removed using analog lowpass filters.

As in the case of analog loops, using single-bit truncation can lead to instability,
and hence limits the effectiveness of the noise shaping. Using multi-bit (typically, 2–5 bit)
truncation improves the noise shaping and makes the task of the analog post filter much
easier. The linearity of the DAC for in-band signals can be achieved by using the same
mismatch shaping techniques used in the internal DACs of analog multi-bit ADCs.

Also as in the case of ADCs, bandpass DACs can be designed. Noise-shaping
now suppresses the truncation noise in a narrow band located around a nonzero center
frequency f0, which need not be much smaller than the clock frequency f .

DACs will be discussed in detail in Chapter 13.

1.10 Decimation and Interpolation

The digital filter that follows the ADC has the crucial function of eliminating shaped
noise. Assuming an ideal brick-wall filter, the filtered output of the modulator has a small
bandwidth in relation to the sampling rate. This allows the output of the digital filter to be
downsampled to yield an output sequence at the Nyquist rate. A brick-wall characteristic
can only be approximated in practice, which means that the filter characteristic should
be very sharp to prevent degradation of the in-band SQNR due to aliasing that occurs
when samples are dropped. The combination of digital filtering and sample-dropping is
performed by a decimation filter. In the same vein, a filter with similar requirements (called
the interpolation filter) occurs in the beginning of a DAC signal chain.

Design considerations for decimation and interpolation filters are given in Chapter 14.

1.11 Specifications and Figures of Merit

The primary specifications of any ADC include its power consumption P, signal bandwidth
(BW), and effective number of bits (ENOB). Clearly, there are combinations of ENOB,
BW and P specifications that are hard, or even impossible, to satisfy, and others that are
relatively easy. To quantify the degree of difficulty, it is common to compute a figure of
merit (FoM) that reflects the power efficiency of the ADC. There are two commonly used
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FoMs. The Walden FoM [1] is defined as

FoM
P

2ENOB f
(1.21)

Here P is the power needed by the ADC, ENOB is the effective number of bits, and f

is the Nyquist frequency. The dimension of FoM is Joules, and it gives the amount of
energy needed for each conversion step (LSB step). Note that a smaller FoM indicates a
more efficient ADC.

An alternative, proposed originally by Rabii and Wooley [2] and presented in a mod-
ified form in the first edition of this book, has been dubbed the Schreier FoM. It is defined
as

FoM
DR BW

P
(1.22)

or

FoM (dB) DR (dB) 10 log10
BW

P
(1.23)

where DR denotes the dynamic range of the ADC. A larger FoM indicates a more efficient
ADC.

The motivation for the definition of the FoM is given next. We assume that the
technology determines the full-scale signal power, and hence, the DR will be determined
by the variable in-band noise power q2 . We also assume that the noise is white, so q2

is proportional to the signal bandwidth BW, and hence, DR is proportional to 1 BW. As a
consequence, for a given ADC with given P, the product DR BW is a constant.

ADC

ADC

ADC

ADC

k identical ADCs

u

1

2

1

Figure 1.23 A multi-path ADC system.

For a fixed BW, the necessary power P is proportional to the required DR. To show
this, assume that the ADC is realized in the multi-path configuration as shown in Fig-
ure 1.23. The component ADCs are identical, and ADC generates an output signal [n]
and a noise output q [n]. The signals are fully correlated, and hence the output signal power
will be k2 2 . The noise outputs are uncorrelated, and hence the total noise output power
will be k q2 . The overall dynamic range of the ADC will hence be k times the DR of
the individual component ADCs. If each ADC needs a power P, the total power used will
be k P. Since both the DR and P are proportional to k, they must also be proportional to
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each other. Note that this result agrees with the observation that the thermal noise power
can be decreased by reducing the impedance level of the circuitry. Thus, increasing all C,

and 1 R values by a factor k 1 will change DR into k DR, but it will increase all
currents, and thus for fixed bias voltages P also, by the same factor k.

For a fixed DR, the power P needed is proportional to the required BW. To show
this, assume initially that the power is kept constant, and the BW is increased by a factor
l. Since, with fixed P, the product DR BW is constant, the new dynamic range is DR l.
To restore DR to its original value, by the argument of the preceding paragraph, P must be
replaced by l P. (An alternative derivation of the proportionality between BW and P can
also be based on the structure of Figure 1.23, assuming that each ADC has a BW l wide
sub-band of the overall band.)

Finally, consider what happens if both DR and BW are changed. If DR is replaced
by k DR, and BW by l BW, by the arguments presented above, the power P needs to
be changed to k l P. This shows that DR BW P is a characteristic constant of a given
converter, and hence can be used to compare the efficiencies of competing configurations
and circuits.

The FoMs introduced above can be used for evaluating the energy efficiency of ADCs,
but they do not tell the whole story about their practical usefulness. The key missing param-
eters are the cost and system impact of the chosen architecture. The cost aspects include
the technology needed for their implementation, the silicon area occupied by the ADC, the
number of pins required on the package, the production tests needed, and the fabrication
yield. The system aspects include the prefiltering (anti-aliasing) needed, and the out-of-
band signal transmission of the ADC. The latter determine how effectively the ADC can
suppress large unwanted out-of-band “blockers” present in its input signal. For a meaning-
ful comparison of the available ADC algorithms and configurations, these properties also
need to be taken into account!

1.12 Early History, Performance, and Architectural Trends

The way modulation is developed in this book is not how it historically came about.
The origins can be traced to -modulation, which was a technique intended to be used to
encode speech into digital form, so as to enable electronic switching in telephony. The
prevalent technique at the time was to digitize speech at its Nyquist rate and quantize it
to the required resolution of 8 bits. Since building an 8-bit ADC was a challenge, people
began to wonder if using oversampling (so as to induce significant correlation between
successive samples) could simplify the design of the quantizer.

The basic idea behind -modulation is the following. If the input signal to be digitized
is slowly varying in relation to the sampling rate, successive samples are so similar that one
might as well transmit only the quantized difference ( ) between successive samples. This
way, the dynamic range of the transmitted signal can be significantly smaller than that of
the signal itself, reducing the number of levels needed in the quantizer. In a modulator,
the quantizer is the simplest possible, namely the two-level one.

A naive attempt at transmitting the quantized difference is shown in Figure 1.24(a).
The transmitter puts out a two-level sequence , whose sign is dependent on the sign of
the input slope. Since contains the first difference of u, the receiver should be an inte-
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grator. Figure 1.24(b) compares the sinusoidal input u and its estimate û at the receiver’s
output, when OSR 512. We see significant error between the two waveforms, since the
low-frequency component of quantization noise is greatly amplified by the integrator in the
receiver. Since is a two-level sequence, it might be thought of as an ADC – however, as
seen from Figure 1.24(b), its performance leaves a lot to be desired.
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Figure 1.24 (a) A simple-minded attempt at quantizing the difference between successive samples
of a highly oversampled signal. (b) Input and reconstructed waveforms. The reconstruction error has
a large low-frequency component.

The -modulator, which is a fundamental improvement over the idea discussed above,
derives the delayed version of the input by integrating , as shown in Figure 1.25(a). As
a consequence, the quantization error e is in the feedback loop. It can be thought of as
quantizing the difference between the input and its predicted value. In fact, the name
modulator is derived from the fact that the output is based on the difference ( ) between
a sample of the input and a predicted value of that sample. In the general case, the loop
filter may be a higher-order circuit, which generates a more accurate prediction of the input
sample u[n], in order to subtract from the actual u[n]. This type of modulator is sometimes
called a predictive encoder.

Referring to Figure 1.25,

[n] u[n] u[n 1] e[n] e[n 1] (1.24)

We see that the quantization noise is also first-order shaped, and the reconstruction error
at the receiver will therefore be much smaller. This is confirmed by the waveforms in
Figure 1.25(b) – for the same input and step size, û is a much better approximation to u

when compared to the system of Figure 1.24(a). Since is a two-level sequence from
which u can be reconstructed, it follows that the -modulator can also be thought of as
an ADC. It, however, has several disadvantages. The loop filter (integrator for the first-
order loop shown) is in the feedback path, and hence, its nonidealities limit the achievable
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Figure 1.25 (a) The -modulator. (b) Reconstruction error is greatly reduced due to noise-shaping
of the quantizer’s error.

linearity and accuracy. The integrator in the receiver has a high gain in the signal band, and
hence, it will amplify the nonlinear distortion of the transmitted waveform as well as any
noise picked up by the signal between the modulator and demodulator. It can also produce
an arbitrary dc offset in the output. A delta-modulator, therefore, does not work reliably
with a dc input.

The -modulator of Figure 1.25 is also called an error-feedback structure. It was
proposed in 1952 by de Jager [3], and in a different form by Cutler [4].

The modulator of Figure 1.13 is an alternative oversampling structure that avoids
the shortcomings of the -modulator. It is again a feedback loop, containing a loop filter as
well as an internal low-resolution quantizer, but the loop filter is now in the forward path
of the loop. As seen earlier, the modulator’s output is given by

[n] u[n 1] e[n] e[n 1] (1.25)

Thus, the digital output contains a delayed, but otherwise unchanged, replica of the
analog input signal u and a differentiated version of the quantization error e. Since the
signal is not changed by the modulation process, the demodulation operation does not need
an integrator as was the case for the delta modulator. Hence, the amplification of in-band
noise and distortion at the receiver does not take place. Furthermore, the differentiation
of the error e suppresses it at frequencies that are small compared to the sampling rate f .
In general, if the loop filter has a high gain in the signal band, the in-band quantization
“noise” is strongly attenuated, a process now commonly called noise shaping.

The modulator can be obtained from the -modulator by cascading an integrator
or summing block with the delta modulator. Hence, the structure of Figure 1.13 came to
be called a sigma-delta ( ) modulator. Alternatively, one can observe the differencing at
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the input, followed by the summation in the loop filter, and hence call the structure a delta-
sigma ( ) modulator. Other systems with higher-order loop filters, multi-bit quantizers
and the like are most properly called noise-shaping modulators, but it is common to extend
the term modulator (or modulator) to these systems as well.

Although the basic idea of using feedback to improve the accuracy of data conver-
sion has been around for about 50 years, the concept of noise-shaping was probably first
proposed (along with the name delta-sigma modulation) in 1962 by Inose et al. [5]. They
described a system containing a continuous-time integrator as the loop filter, and a Schmitt
trigger as the ADC, that achieved (nearly) 40 dB SNR and had a signal bandwidth of about
5 kHz. Since the trade-off between analog accuracy and higher speed plus additional dig-
ital hardware was not particularly attractive at the time, further research on this topic was
relatively sparse for a while.

Twelve years later, Ritchie proposed the use of higher-order loop filters [6]. Useful
theory, as well as analysis and design techniques were developed by Candy and his collab-
orators at Bell Laboratories [7, 8, 9, 10, 11]. Candy and Huynh also proposed the MASH
concept for the digital modulators used in DACs [12]. In 1986, Adams described an
18-bit ADC that used a third-order continuous-time loop filter, and a 4-bit quantizer
with trimmed resistors performing as the DAC [13]. The MASH configuration was first
applied in ADCs by Hayashi et al. [14] in 1986.

Using a multi-bit internal quantizer in a loop with digital linearity correction was
proposed by Larson et al. [15] in 1988; the use of dynamic matching (randomization) was
also introduced for the internal DAC of a ADC by Carley and Kenney in 1988 [16].
Various mismatch-shaping algorithms were suggested subsequently by Leung and Sutarja
[17], Story [18], Redman-White and Bourner [19], Jackson [20], Adams and Kwan [21],
Baird and Fiez [22], Schreier and Zhang [23], and Galton [24].

Bandpass modulators were motivated for their potential applications in wireless
communications, and emerged in the late 1980s [25, 26, 27].

Current design trends in converters are aimed at extending the signal frequency
range without any reduction in SNR. This will open up new applications in digital video,
wireless and wired communications, radar and so on. Higher speed can often be achieved
by using high-resolution (typically, 5-bit) internal quantizers, and a multistage (2- or 3-
stage) MASH architecture. To correct for the nonlinearity of the internal DAC and for
quantization noise leakage, digital correction algorithms have been proposed [28] for

ADCs. A great deal of effort is also being applied to improving the performance of
bandpass ADCs [29, 30, 31, 32, 33].

Over the last decade, there has been a significant wave of research, and commercial
deployment of continuous-time ADCs. The benefits of such converters are many. As
discussed earlier in this chapter, they feature the remarkable property of inherent anti-
aliasing. It turns out that this makes them robust when they are part of a large digital chip
with significant substrate noise. The input impedance of these ADCs is (usually) resistive,
making them easy to drive. Reference generation circuitry is also generally simpler to
design when compared to the corresponding effort needed in the case of a Nyquist ADC.

Technological trends (finer line widths, accompanied with lower breakdown volt-
ages) stimulated research into modulators needing only low supply voltages [34].
Also applications opening up in portable devices motivated the development of low-power
design techniques for data converters. Finally, applications in the instrumentation
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and measurements area, including biomedical sensor interfaces motivated the develop-
ment of low-frequency and very-high-accuracy ADCs, often realized by periodically reset

modulators (which, as we discussed earlier, are called incremental data converters).

As noise-shaping theory and practice continue to mature, data converters can be
expected to expand their range of application further.
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CHAPTER 2

SAMPLING, OVERSAMPLING, AND
NOISE-SHAPING

Analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) play a cru-
cial role in the signal conditioning needed to interface the real world, whose signals are
continuous both in time and amplitude, to the virtual world, where they are represented as
quantities discrete in time and amplitude.

Filter
sample

Quantizer Encoder
bits

input

ADC

x (t)

x(t)

x[n]

x [n]

Figure 2.1 Representative signal chain of an analog front end.

The block diagram of the signal chain of a typical analog front end is shown in Figure
2.1. The input signal x (t) has a bandwidth of B Hz. In principle, it can be perfectly
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reconstructed from its samples provided that the sampling rate f is at least 2B. In practice,
the input is usually corrupted by noise, which can have frequency components outside the
frequency range [0 B]. Thus, x (t) must be filtered by an anti-alias filter before sampling.
The filter eliminates out of band noise, which would otherwise alias into the signal band
after sampling, and degrade the quality of the samples of x (t).

The samples of the filter output, x[n] x(nT ) (where T 1 f ) are then quantized
in amplitude to yield x [n], which has a discrete number of levels. A digital code can be
assigned to each of the levels – thereby yielding a digital signal – one that is discrete both
in time (due to sampling) and amplitude (due to quantization).

2.1 A Review of Sampling

Since x[n] is a result of sampling x(t), the Fourier transform of x[n] should be related
to that of x(t). To determine this relationship, we proceed as follows. We first form a
continuous-time signal x (t) by multiplying x(t) with the Dirac delta train (t nT )
(which is periodic with T ). Thus,

x (t) x(t) (t nT ) x(nT )
[ ]

(t nT ) (2.1)

One way of obtaining the Fourier transform of x (t) is to convolve the transform of x(t)
(denoted by X ( f )) with that of the Delta train [1].

Recalling that

(t kT )
1
T

( f n f ) (2.2)

where f 1 T , we obtain

x (t) X ( f )
1
T

X ( f n f ) (2.3)

Applying the Fourier transform to both sides of (2.1), but term by term on the right-hand
side this time, we can also express X ( f ) as

X ( f ) x[n]e 2 (2.4)

From (2.3) and (2.4), we have

x[n]e 2 1
T

X ( f n f ) (2.5)

The discrete-time Fourier transform of the sequence x[n], denoted by X (e ), can then
be obtained by replacing 2 f T with in the relation above. This yields
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X (e ) x[n] x[n]e f X
f

2
n f (2.6)

Clearly, X (e ) is periodic with period 2 .

Given X ( f ), the discrete-time Fourier transform X (e ) of x[n] can be obtained by
the following process, as illustrated in Figure 2.2.

......
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X ( f )

X ( f )

X (e )

f
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B

(a)

(b)

(c)

Figure 2.2 Fourier transforms of (a) x(t), (b) x (t), and (c) x[n].

Form copies of X ( f ), shifted by integer multiples of f .

Add these copies and scale the result by f (Figure 2.2(b)).

Scale the frequency axis so that f corresponds to 2 and label the axis with (Figure
2.2(c)).

From the figure above, it is apparent that choosing f 2B causes the shifted copies
of X ( f ) to overlap, resulting in aliasing. The minimum sampling frequency that prevents
aliasing is, therefore, f 2B, which is referred to as the Nyquist rate.

A continuous-time tone at f Hz, after sampling, appears as a discrete-time tone at
2 f T . Due to the periodicity of X (e ), two continuous-time tones with frequencies

of the form f and f m f , where m is an integer, cannot be distinguished from each other
after being sampled at f .

It is natural to wonder what benefits (if any) accrue if a signal is sampled at a rate
higher than 2B. A number that compares the actual sampling rate f to the Nyquist rate
2B is called the oversampling ratio (OSR), and is defined as

OSR
f

2B
(2.7)

Figure 2.3 shows the benefit to be had, with regard to the anti-alias filter, by using a larger
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Figure 2.3 Constraints on the response of the anti-alias filter, for two sampling rates.

OSR. Without the filter, signals in the frequency range [ f B f B] will alias into the
desired signal band 2 (B f ) after sampling. The filter, therefore, should attenuate
all signals in the alias zones. The filter’s magnitude response should be 1 for f B and
0 for f f B. By increasing the OSR, it is seen that the transition band of the filter
is wider, thereby relaxing the design of the filter. With very high OSRs, anti-alias filtering
can be trivial.

Apart from a relaxed anti-alias filter, a high OSR also plays a crucial role in reducing
in-band quantization noise, as we will see in the rest of this book. The operation following
anti-alias filtering and sampling is quantization, as shown in Figure 2.1.

2.2 Quantization

Quantization is a nonlinear memoryless operation, whose symbol is shown in Figure 2.4(a).
A convention that we follow throughout this book is to denote a quantizer’s input by , and
its output by . The transfer curve is a staircase that is usually uniform, so that any two
adjacent output levels differ by a fixed spacing . The staircase straddles a straight line
with slope k for a range of inputs and saturates thereafter.

In practice, quantizers are implemented with bipolar inputs, with the transfer curve
being an odd function of . Depending on the number of steps, denoted by M , two types
of transfer curves are possible, as shown in Figure 2.4(b) and (c). The first, where 0
coincides with a step (rise) of , is called a mid-rise characteristic. In the second case,

0 occurs in the middle of a flat portion (tread) of the curve, so the quantizer is called a
mid-tread quantizer. Unless otherwise noted, the quantizers considered in this text will be
symmetric bipolar quantizers with 2. This common value for allows the quantization
levels of both quantizer types to be integer values: odd integers for the mid-rise quantizer
and even integers for the mid-tread quantizer. The difference e is is called the
quantization error, or (not entirely correctly) the quantization noise.

The transfer curve that relates the error to the input is shown in Figure 2.4(c). It can
be seen from the figure that as long as is between (M 1) and (M 1), the error

A mnemonic for the notation that is the quantizer input and is its output is to think of the quantizer as losing
information and to picture the letter as being the letter minus its tail.
For mathematical convenience, we typically use 1
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Figure 2.4 (a) Quantizer symbol. Transfer and error curves for a symmetric bipolar M-step (b)
mid-rise and (c) mid-tread quantizer, with 2 and k 1.

e lies between 1 and 1. We call the range of where this condition is satisfied, as the
no-overload input range, or simply the input range. The difference between the lowest and
highest levels is called the full-scale (FS) of the quantizer. Table 2.1 summarizes these and
other properties of the quantizers of Figure 2.4(b) and (c).

Parameter Value
Input step size (LSB size) 2

Number of steps M

Number of levels M 1
Number of bits log2(M 1)

No-overload input range [ (M 1) (M 1)]
Full-scale 2M

Input thresholds 0 2 (M 1), M odd (mid-rise)
1 3 (M 1), M even (mid-tread)

Output levels 1 3 M , M odd (mid-rise)
0 2 4 M , M even (mid-tread)

Table 2.1 Properties of the symmetric quantizers of Figures 2.4(b) and (c), with 2.

The ideal quantizer is a deterministic device; , and hence also the error e, are fully
determined by the input . However, as shown in Figure 2.4, e is a “complicated” function
of . The difficulties associated with the strongly nonlinear nature of the quantizer have
prompted engineers to make several assumptions regarding the nature of quantization error.
Loosely speaking, these assumptions are permissible when stays within the input range
of the quantizer, and changes by sufficiently large amounts from sample to sample so
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that its position within a quantization interval is essentially random (such a signal is also
called a busy signal). A detailed (and more appropriate) discussion on quantization, various
approximations for the properties of quantization error, and the assumptions behind them,
are given in [2]. The simplifying assumptions are the following:

1. e is assumed to be an additive “noise” sequence.

2. e is assumed to be independent of .

3. e is assumed to be uniformly distributed in [ 1 1].

4. Having made three dubious assumptions about e, it does not hurt to make one more –
namely, that e is a white sequence.

Even though none of the assumptions above are guaranteed to be true, it is amazing
how far we can go with them. First, let us compute the mean and variance of e using
assumption 3 above.

e
1
2

1

1
e de 0 (2.8)

and

e2 1
2

1

1
e2 de

1
3

(2.9)

The implications of assumption 4 are shown in the frequency domain in Figure 2.5.
The input is sampled at the Nyquist rate, and the spectrum of [n] extends from [ ].
After quantization, is corrupted by e, whose (double-sided) spectral density is flat and
equal to 2 (24 ).

f

Y ( f )

B

(t) [n]

f 2B

[n]

V (e )

B

White noise with
spectral density 2 (24 )

Figure 2.5 Spectral view of the additive quantization noise assumption. (t) is sampled at the
Nyquist rate (OSR 1).

To summarize, the quantizer’s input and output are related by

e (2.10)

where e is assumed to be a uniformly distributed random variable when is busy.
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What is the SNR at the output of an N-bit (2 -level) quantizer for a sinusoid exercis-
ing the full range? The peak-to-peak amplitude of such a sinusoid is 2 , resulting in a
signal power of 22 3 2. The mean-square noise due to quantization is 2 12 (assuming
that the error is uniformly distributed). The peak SQNR (in dB), therefore, is given by
10 log(22 (12 8)) 6 02N 1 76 dB.

It is important to note that (2.10) is always valid; an approximation is made only when
e is assumed to have specified properties such as a uniform distribution or a white spectrum.
Again, such approximations are only justifiable under the conditions stated earlier.

It is easy to conceive of inputs for which these conditions are not satisfied, and hence
for which the approximation gives wildly wrong results. A constant , or a periodic with
a frequency harmonically related to f are examples that immediately come to mind.
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Figure 2.6 (a) A sine wave quantized by a symmetrical 16-step quantizer, and (b) the corresponding
quantization error sequence.

To illustrate these points, Figure 2.6 shows a full-scale sine wave sampled and then
quantized by a 16-step symmetrical bipolar quantizer with 2. The frequency f of the
input is moderately low compared to f and does not have a simple harmonic relation to
f . As a result, the quantization error sequence appears fairly random, although a careful
examination of the error sequence as the input passes through its peaks does reveal a non-
zero correlation between adjacent samples. The mean-square value of the error in this
example is found to be 0.30, which is close to the expected value of 2 12 1 3.

A fast Fourier transform (FFT) of is plotted in Figure 2.7. The spectrum consists
of one large spike representing the input sine wave, plus many smaller spikes distributed
evenly along the frequency axis, representing the frequency components of the quantization
error. Judging by these results, the white-noise approximation appears to be reasonable in
this situation.
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Figure 2.7 A 256-point FFT of the quantized sine wave of Figure 2.6.

5 10 15 20 25 30
-16

-8

0

8

16

5 10 15 20 25 30
-1

0

1
Sample number

Sample number

E
rr

o
r

In
p

u
t,

q
u

a
n

ti
ze

d
o

u
tp

u
t (a)

(b)

Figure 2.8 (a) A f f 8 sine wave, sampled at f , and quantized by a symmetrical 16-step
quantizer, and (b) the corresponding quantization error sequence.
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Figure 2.9 A 256-point FFT of the quantized sine wave of Figure 2.8.



QUANTIZATION 35

Now consider what happens when the full-scale sine wave with frequency f f 8
shown in Figure 2.8 is quantized by the same 16-step quantizer. The quantization error,
shown in the lower part of the figure, is now periodic, and since it assumes only three val-
ues, its distribution is far from uniform. The mean-square value of this error sequence is
found to be 0.23, or only about 70% of the expected value. The FFT shown in Figure 2.9
represents an even more serious departure from our normal assumptions in that the spec-
trum now consists of only two spikes! The quantization noise energy is fully concentrated
in one tone at f 8 (coincident with the signal itself) and a second tone at 3 f 8 (the third
harmonic of the signal).

2.2.1 Quantizer Modeling

As illustrated in Fig 2.10, the quantizer’s transfer curve straddles a straight line with slope
k 1. We therefore modeled the quantizer (assuming it is not overloaded, and that is
busy, so that e is uniform) as a system whose gain k is unity, and whose input is corrupted
by quantization noise. It seemed natural to use k 1. But why is this justified? After all,
one can draw many straight lines “within” the quantizer characteristic, as shown in Figure
2.10(a).

k 1

k 1
(a) (b)

k ?

Figure 2.10 (a) Many straight lines “fit” the quantizer characteristic. (b) What is the best-fit line
for a 2-level quantizer?

This question becomes more problematic as the number of quantizer steps is reduced.
As seen in Figure 2.10(b), any number of “best-fit” lines can be drawn for a 2-level quan-
tizer. All three lines in the figure result in the same maximum error of 2, although with
different no-overload ranges. Clearly, a more systematic way of determining the gain is
necessary.

A natural way of determining the gain of a quantizer is to ask the question – what is
the slope k of the straight line that results in the smallest average squared error between
the quantizer’s output and k ? In other words, we should attempt to minimize

2 lim
1
N 0

e2[n] lim
1
N 0

( [n] k [n])2 (2.11)

To determine k, we first introduce the notation for an inner product, or a scalar prod-
uct. For real sequences a and b, the inner product is defined as

a b lim
1
N 0

a[n]b[n] E[ab] (2.12)
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Since e k , the average power of e can be written as

2 e e

k k

2k k2 (2.13)

This is minimized for
k (2.14)
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Figure 2.11 Computed gain and noise variance for a mid-tread quantizer ( 2) as a function of
strength: (a) Sine-wave input and (b) Gaussian noise with variance 2.

Figure 2.11 shows the computed k and 2 for a mid-tread quantizer with 2, for
two kinds of inputs. A sinusoidal input with f f 7 256 is used to generate the results
in part(a) of the figure. For large amplitudes (as long as the quantizer is not overloaded),
the gain hovers around unity, and 2 2 12. k deviates from unity at small amplitudes,
before becoming 0 for A 1. This makes sense, given that the quantizer is of the mid-tread
type.

The situation is somewhat different when is a zero mean, white Gaussian sequence
with a standard deviation denoted by . Thanks to the “busy” nature of , k and 2 are
virtually 1 and 1 3, respectively, for 1. This makes sense, when we bear in mind that
the excursions of a Gaussian distribution are about 3 about the mean. So, even when

1, is a 4-level sequence.
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2.2.2 Overloaded Quantizers

What should we expect to happen to k and 2 when the input is so large that the quantizer
starts to become overloaded? Since saturates when exceeds the input range, k should
reduce. Further, when the quantizer is overloaded, e exceeds 2; so we should expect the
decrease in k to be accompanied by an increased 2.
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Figure 2.12 Computed gain and noise variance for a five-level quantizer ( 2) as a function of
strength: (a) Sine-wave input and (b) Gaussian noise with variance 2.

This intuition is confirmed by the simulation results shown in Figure 2.12. The quan-
tizer’s input range is [ 5 5]. For the sine-wave input, k and 2 begin to deviate from the
curves in Figure 2.11(a) at A 2 3 5. For the Gaussian input, we see that this occurs at

5 3 1 67

What is the gain for a 2-level (binary) quantizer? In this case, (2.14) simplifies to

k
E[ ]
E[ 2]

(2.15)

Clearly, the optimal value of k for the linear model of a binary quantizer is dependent on
the statistics of its input . As a sanity check, let k be the gain associated with an input

according to (2.15). If the input is modified to ˆ 10 , then E[ ˆ ] 10 E[ ] and
E[ ˆ2] 100 (E[ 2]), so that k̂ k 10. Thus, the effective gain of a binary quantizer is
reduced by a factor of 10 when its input is amplified by a factor of 10. This makes physical
sense, since remains the same when is increased tenfold.

When a system containing a binary quantizer is replaced by its linear model, the
estimate of the quantizer’s gain k should be found from extensive numerical simulations.
Otherwise, misleading results may be obtained from the linear model.
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2.2.3 Quantizer Modeling with Two Inputs

1

2

Figure 2.13 is the quantized version of 1 2.

How does one model a quantizer with two inputs 1 and 2, as shown in Figure 2.13?
We proceed in a manner similar to that in the single input case by writing

k1 1 k2 2 e (2.16)

and determining those values k1 and k2 that minimize the error e between and k1 1 k2 2
in the mean-square sense. The best fit k1 and k2 (assuming 1 2 0) are given by

k1
1

1 1
k2

2

2 2
(2.17)
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Figure 2.14 Computed gain and noise variance for quantizers (with 2) for
A sin[2 ( f f )n] N (0 1) as A is varied, without ( levels) and with overload (5 levels).

When the number of levels is very large, so that the quantizer does not saturate, and
when is busy, we can expect k1 and k2 to be both equal and close to 1. The mean-square
error, by the same token, should be 2 12. This intuition is confirmed by the results in
Figure 2.14, which shows k1 k2, and 2 for a quantizer with 2. The input is given by

A sin[2 ( f f )n]
1

N (0 )

2

(2.18)

where 1 is a sinusoid with f f 7 256, and 2 is Gaussian noise with 1. In the
figure, A 2 is swept from 0.1 to 10. We see that k1 k2 1 and 2 (1 3)( 2 12).

When the number of levels is reduced to 5, the quantizer begins to saturate – occa-
sionally, when A is small, but more and more frequently for larger values of A. This causes
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Amax

Amax

1 2

Figure 2.15 Sinusoid and noise passed through a saturating nonlinearity – the effective gain for
the sine wave is higher than that for noise.

k1 and k2 to reduce, and 2 to increase. An estimate of A at which this begins to happen
is 5 3 2. Interestingly, we see that k1 and k2 are not the same when the quantizer
overloads. We also notice that k1 k2. Why does this make sense?

Consider the sum of a sine wave ( 1 A sin[2 ( f f )n]) and noise ( 2 N (0 1))
exciting a saturating nonlinearity, as shown in Figure 2.15. Since A A 1, the
output saturates for a portion of the period of the sine wave, during which time the “incre-
mental gain” for the noise 2 is zero. The average gain for 2 should, therefore, be smaller
than unity.

The average gain for 1 is also smaller than unity, since the output, when saturated, is
smaller than what it would have been without saturation. However, in contrast to 2, which
is completely attenuated, only a small portion of 1 is “lost” due to saturation. Thus, the
effective gain k1 for the sinusoid, though smaller than 1, should be greater than the gain k2
for noise.

2.3 Quantization Noise Reduction by Oversampling

The quantizer’s output, after encoding, is a digital signal that is used by the DSP for pro-
cessing. The DSP is, therefore, using as an approximate representation of (to within e).
Put another way, the DSP’s estimate ˆ[n] of [n] is [n]. Thus, as we saw in the previous
section, the mean-square value of the error between the estimate ˆ[n] and [n] is 2 12.

Now, suppose that [n] is known to be the result of quantizing a slowly varying se-
quence [n], as shown in Figure 2.16. This corresponds to sampling with a large over-
sampling ratio (OSR 1). Can we estimate from with a mean-square error less than

This phenomenon where the gain of one signal is affected by the other, when both of them are passed through
a nonlinear device, is not altogether unfamiliar. This is similar to desensitization in RF amplifiers, where an
amplifier’s gain for a small desired signal is reduced in the presence of a much larger, undesired interfering
signal. This occurs since the interferer periodically drives the compressive amplifier into the lower gain regions
of its transfer curve, resulting in a smaller average gain for the desired signal.
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Figure 2.16 Estimating the quantizer input from its output sequence.

2 12? In other words, can we make a better guess of what is? This should indeed be
possible – the intuition is the following.

Since the input is oversampled, the difference between successive samples should be
small. , on the other hand, exhibits step jumps; these must be arising when crosses
quantizer thresholds. A better estimate ˆ can, therefore, be obtained by “smoothing” the
sequence , as shown in black in Figure 2.16. Mathematically, this is equivalent to filtering
the digital sequence [n] with a digital filter, as shown in Figure 2.17(a).
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Figure 2.17 (a) Improved estimation of by digitally filtering . (b) Comparison of and ˆ.

The results of the numerical experiments of Figures 2.16 and 2.17(b) illustrate the
idea. A low-frequency sine wave is quantized with a step size of 0 25, yielding
. The mean-square difference between and is 4 6 10 3, which is close to 2 12(
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5 2 10 3). To estimate from , the latter is filtered with a sharp digital lowpass filter
with a cutoff frequency of 5. When the filtered output ˆ is compared with , the error
ˆ is greatly reduced, as Figure 2.17(b) shows. ( ˆ )2 is 7 10 5, about 5.5 times
smaller than without filtering. This makes sense – for quantization noise that is white, the
digital filter should be expected to let through 20% of the quantization noise. In reality,
the assumption of “whiteness” does not quite hold, and the mean-square error is somewhat
lower.

The spectral picture of the system, which exploits oversampling to reduce quantiza-
tion noise, is shown in Figure 2.18. The spectrum of occupies the range [ OSR OSR],
while quantization noise extends over the [ ] range, with a (double-sided) spectral den-
sity 2 (24 ). The digital filter cuts off noise outside the signal band, thereby reducing
the power of the quantization noise in ˆ by a factor of OSR.

Digital Filter

Cutoff = OSR

OSR

V (e )

OSR

ˆ
1

V1(e )

Ŷ (e )

OSROSROSR

x(t)

Decimator

White noise with
spectral density 2 (24 )

f 2B OSR

Figure 2.18 Signal chain that employs oversampling to reduce quantization noise, and spectra of
, ˆ, and 1.

That is not all. Since ˆ occupies the range [ OSR OSR], it can be downsampled
by OSR, resulting in the sequence 1, which is at the Nyquist rate. The combination of the
digital filter and down sampler is called the decimation filter. However, when compared to
using the same quantizer with Nyquist sampling, our ADC based on oversampling results
in a reduced quantization noise.

To summarize the discussion above, we saw that by simply oversampling a band-
limited signal, quantizing it, and filtering the digital sequence by an ideal lowpass filter with
cutoff frequency OSR, we were able to reduce the in-band quantization noise power by
a factor of OSR. The net effect was to make it seem as if the resolution of the quantizer had
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improved, since the peak SQNR increased by 10 log10(OSR) dB. Thus, doubling the OSR
results in a 3-dB (or half-bit) improvement of the quantizer resolution. We should keep
in mind, however, that the cost of increasing the resolution came with the requirement of
high-speed digital processing, in the form of the decimation filter.

Having tasted blood, the natural tendency is to now ask the question – can we do
better than a mere half a bit every time we double the OSR? It turns out that we can, and
we turn to our good friend, negative feedback, for inspiration.

2.4 Noise-Shaping

−

+
e

A
u

Figure 2.19 A simple negative-feedback amplifier.

Consider the feedback system with an amplifier, as shown in Figure 2.19. Think of e

as being the output noise of the amplifier. By inspection, we have

A

1 A
u

1
1 A

e (2.19)

As the gain of the amplifier increases, we see that starts approaching u, and the transfer
function from e to diminishes. In the limit of A , u and e does not affect the
output.

−

+

A
u

Figure 2.20 Associating e with quantization error.

Now, what if we assumed e to be quantization noise? In other words, what if the am-
plifier was noiseless, but we associated e with quantization noise as shown in Figure 2.20?
Can we eliminate quantization noise altogether, by embedding it in a negative feedback
loop, and making A sufficiently large? Achieving a large A seems easy to do – as analog
designers, we are completely used to designing high-gain amplifiers. Can elimination of
quantization noise be so easy?

Unfortunately, a scheme that sounds too good to be true is usually too good to be
true, and the system of Figure 2.20 is no exception. To see why, consider a practical
quantizer. Any such physically feasible device will take a finite time to operate – in other
words, the quantized output will only be available a small time after the quantizer has
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“looked” at the input. In other words, the amplifier will be able to use the quantizer output
(and therefore adjust its own output to reduce the error between u and ) only in the next
sample. Mathematically, therefore, we should insert a one-sample delay in the amplifier
output, as shown in Figure 2.21, since the quantizer output can be “seen” by the rest of the
circuit only in the next cycle. This concept is not entirely unfamiliar to us – the fact that
there cannot be a “delay free loop” is a common idea in sequential digital state machine
design.

−

+
e

A
u

z 1

Figure 2.21 A physically realizable discrete-time feedback loop should have at least one sample
delay. e is the quantization error.

Analysis of Figure 2.21 in the z-domain yields

V (z) (U (z) z 1V (z)) A E(z)

which reduces to

V (z)
A

1 Az 1

Signal Transfer Function (STF)

U (z)
1

1 Az 1

Noise Transfer Function (NTF)

E(z) (2.20)

Anticipating things to come, we call the transfer function from the u to the Signal
Transfer Function (STF), and that from e to the Noise Transfer Function (NTF). As
A , the STF approaches unity, while the NTF tends to zero. As is usually the case
for the transfer functions associated with a single system, the STF and NTF have the same
denominator, which is the characteristic polynomial of the system. The pole location of the
system, found by determining the root of the denominator polynomial, is given by z A.

A ( 1)A ( 1)

z-plane

1

1

Figure 2.22 Pole locations of the system of Figure 2.21 for small and large A.
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For a discrete-time system to be stable, all its poles must lie within the unit circle. In
our system, the only way to ensure stability is to make A 1, as shown in Figure 2.22.

We find ourselves in a catch-22 situation – we need A 1 so that the magnitude
of the NTF is small. If we do this, the system is unstable, as the pole lies outside the unit
circle. If we attempt to stabilize the loop, noise suppression is lost!

From the discussion above, it is apparent that making A large at all frequencies is not
workable – it appears as if we were being too greedy by attempting to eliminate quantiza-
tion noise altogether. An aspect we have not exploited so far is that the spectrum of the
input sequence u is confined to low frequencies due to oversampling. Thus, rather than try
to suppress quantization noise across all frequencies, what if we were content to eliminate
it only over the signal bandwidth [0 OSR]? Equivalently, rather than make A high at
all frequencies, what if A was made high only at low frequencies? This calls for replac-
ing the frequency-independent gain A by a block with a frequency-dependent gain. This
gain should be infinite at low frequencies, so that the NTF has a small magnitude at low
frequencies. The lowest order system with these characteristics is an integrator.

z 1

1
1 1

e

u

Figure 2.23 A negative feedback system where the output quantization noise is attenuated at low
frequencies.

The resulting system is shown in Figure 2.23. Using A 1 (1 z 1) in (2.20), we
see that

V (z) 1
STF

U (z) 1 z 1

NTF

E(z) (2.21)

The STF is unity. The NTF, (1 z 1), is a first-order high pass response with a zero of
transmission at dc ( 0, or, z 1). This makes sense, since the gain of the “forward
amplifier” is infinite at dc.

The magnitude response of the NTF in linear and log scales is shown in Figure 2.24.
The shaded portion in part (a) of the figure shows the in-band component of the noise, and
extends from dc to OSR. The log plot places in evidence the first-order nature of
the highpass response, increasing at a rate of 20 dB/decade.

Let us determine the variance of the in-band quantization noise.

IBN
2

24
OSR

OSR

(1 e ) 2 d
2

12
OSR

0
4 sin2

2
d

2

12
OSR

0

2 d
2

36

3

OSR3

We see that the in-band noise power is proportional to OSR 3. Doubling the OSR de-
creases the in-band noise power by 9 dB, corresponding to an effective increase in resolu-
tion of 1.5 bits. Recall that by simply oversampling (but without noise-shaping), resolution
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Figure 2.24 Magnitude of the NTF of a first-order noise-shaping quantizer on the (a) linear and
(b) log scales.

only increased by 0.5 bit when the OSR doubled. In either case, arbitrarily high accuracy
can, in principle, be achieved by using a sufficiently high value of OSR, but the OSR value
needed is much lower when oversampling is combined with noise-shaping. Spectrally,
quantization noise is highpass filtered, or “shaped” out of the signal band. This, therefore,
is a first-order noise-shaped converter, also known as a first-order converter. In this
book, we also affectionately (and interchangeably) refer to this system as MOD1.

u
1

1 1

z 1

1

1 1

1
1 1

Modulator

u

(a)

(b)

Figure 2.25 Justifying the name (a) modulator and (b) modulator.
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or ?

A (friendly) bone of contention in the design community is the choice of nomen-
clature. Should this be called a modulator, or a modulator? Some design-
ers argue that is apt due to the following. From Figure 2.25(a), we see that the

operation occurs first, followed by the . In science and engineering, a com-
posite operation is named in the reverse order of the individual operations. For
example, to determine the root mean-square value of a waveform, we first square
it, determine its mean and then compute the result’s square root. In a similar vein,
therefore, this should be called a modulator.
The proponents of argue that the modulator historically resulted from cascad-
ing an integrator ( ) and a modulator. Going by the reverse-order convention,
it makes sense to call this the modulator. Another convention is that the first
name used in the literature is the one that should be used, and since Inose and
Yasuda [3] chose the name , that is the convention we have adopted. Besides,

simply sounds better.

-
u

1

1 1
OSR

OSR

DecimatorModulator

z-plane

h[n]1

-1

(a)

(b)

Figure 2.26 (a) Signal chain with a first-order loop. (b) Pole-zero map of the system and the
impulse response corresponding to the NTF.

The system diagram of a first-order converter is shown in Figure 2.26. It consists
of an “analog” part (often called the modulator), which is the negative-feedback loop incor-
porating the integrator, quantizer and subtractor. The decimator is comprised of a “sharp”
digital lowpass filter, whose output is downsampled by a factor of OSR, yielding a Nyquist
rate digital signal .

The equations governing the operation of the modulator are

[n] [n 1] u[n 1] [n 1]
[n] [n] (2.22)

The output can be expressed as a sum of the input u and the quantization error e

. Therefore,
V (z) z 1U (z) (1 z 1)E(z)
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There is no approximation involved in the equations above; the approximation is to assume
that e[n] is a white sequence.

Quantization error is “first-order shaped” out of the signal band, with a transfer func-
tion (1 z 1), which has a zero at dc.

Assuming white quantization noise, the in-band noise power is proportional to OSR 3.
Doubling the OSR, therefore, increases resolution by 9 dB. For an M-step quantizer,
the peak SQNR for a full-scale input is given by

SQNR
9M2OSR3

2 2 (2.23)

This indicates that many design choices can be used to achieve a desired peak SQN R.
A many-level quantizer can be used in a loop with sampling with a low OSR;
alternatively, increasing the OSR allows one to reduce M . The attractive aspect of the
latter approach is the greatly simplified complexity of the quantizer (and subsequently,
the loop) as M is reduced.

In the limit, M 1, resulting in a 2-level, or binary, or single-bit quantizer. At
first glance, it would almost sound unbelievable that a 1-bit quantizer can be used to
digitize a quantity with high precision. With oversampling, negative feedback and
appropriate digital processing (in the form of a decimation filter), we have seen how
this is possible. Such is the magic of feedback.

Denoting the impulse response corresponding to the NTF by h[n], we see that
h[0] 1. This makes sense due to the following. The output due to an impulse
in e at n 0 is comprised of two parts: e[0] 1 and [0]. As we discussed earlier,
one cannot implement a delay-free loop. This means that the output of the loop filter
( ) at n 0 must be zero – resulting in h[0] 1. In the transform domain, this
constraint translates as

NTF(z) h[0] h[1]z 1 h[2]z 2 h[n]z (2.24)

Setting z , we see that
NTF( ) h[0] 1

This (or its time domain equivalent) is a fundamental constraint that applies to any

realizable loop. Evaluating (2.24) at z 1, and recognizing that NTF(1) 0, we
see that, for any NTF with a zero at dc, 0 h[n] 0.

While the in-band noise decreases, the total quantization noise power in is more

than that introduced by the quantizer (which is 2 12). The computation of the total
quantization noise power (i.e, over the entire band [0, ]) is simplified using Parseval’s
theorem, and is given by

2

12 0
NTF(e ) 2 d

2

12 0
h2[n] 2

2

12
(2.25)

It is instructive to compare the output sequence of an oversampling converter (without
noise-shaping), with that of a first-order modulator. Figure 2.27(a) shows the quantizer
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Figure 2.27 (a) u and (b) u and after being filtered with a digital lowpass filter. (c) Error
between the input and filtered output.



NOISE-SHAPING 49

outputs in both cases. The output of the modulator is seen to consist of many more
transitions between levels – this makes sense, as the gain of the quantization noise at high
frequencies ( ) is 2 (as opposed to one in the case with only oversampling). Part (b)
of the figure shows the waveforms after digitally filtering the sequences – as seen in Figure
2.27(c), it is apparent that the quantization error is greatly suppressed by noise shaping.

ADCs, DACs, and Quantizers

We saw in Figure 2.1 that an ADC conceptually samples an input, and then
quantizes and assigns a digital word to each level of the quantizer output. While
this block diagram of an ADC is convenient for analysis, a practical ADC is not
implemented in this way. Rather, quantization and encoding are interwoven in
ways that depend on the specific ADC architecture. In other words, a sampled
and quantized version of the input (x [n] in Figure 2.1) is simply not available.
Sometimes, the input is also not explicitly sampled before being quantized. This
is understandable because, in theory, interchanging the order of sampling and
quantization has no bearing on the ADC output. Furthermore, the input has
dimensions (usually of voltage or current), while the output is dimensionless.

A DAC, in contrast, produces a continuous-time waveform in response to a digital
sequence. The dimensions of the output correspond to that of a physical quantity
(e.g., voltage, current, or charge) while the input is dimensionless.

A quantizer, like the one in Figure 2.26, is a device whose input and output are
dimensioned quantities. So, just how does one realize the quantizer in Figure
2.26? The common way of doing this is shown in Figure 2.28(a), where an ADC
and DAC are cascaded. The resulting first-order modulator is shown in Figure
2.28(b). The output of the ADC, which is a digital word, is processed by the
decimation filter, while the DAC output is subtracted from u and processed by the
integrator.

ADC DAC

ADC

DAC

u
1

1 1

(a)

(b)

Digital

Figure 2.28 (a) A quantizer’s practical realization by a ADC–DAC cascade and (b) a practical
first-order modulator.
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2.4.1 The Effects of Finite DC Gain of the Integrator

Ideally, the dc gain of the integrator in the loop should be infinite. With circuit nonide-
alities, however, one can only ensure a large (but not infinite) dc gain, which we denote by
A. Referring to Fig.2 26, the transfer function of a practical integrator is modified to

L0(z)
pz 1

1 pz 1 (2.26)

where p A (1 A). The NTF is, therefore,

NTF(z) 1 pz 1 (2.27)

From this expression, it is apparent that the NTF’s zero shifts from z 1 to z p,
inside the unit circle. Thus the NTF gain at dc changes from its ideal value of zero to
(1 p) 1 (A 1), and the modulator loses its ability to achieve infinite precision with dc
signals. For busy input signals, the additional noise power resulting from the “filling in” of
the noise notch at low frequencies can be estimated by integrating NTF(e ) 2 A 2 2

across the band of interest and comparing the result against the A case. If A OSR,
the additional noise is less than 1.2 dB, and hence this effect is rarely serious. Although
this argument suggests that high opamp gain is not a critical requirement, the reader should
be aware that the above argument assumes linear opamp gain and neglects the phenomenon
of dead-zones. Low opamp gain can be problematic if the gain is sufficiently nonlinear.
Also the finite-gain effect has serious consequences for the cascade (MASH) architectures
discussed in Chapter 5.

2.4.2 Effect of Quantizer Nonidealities

As seen in Figure 2.29, a practical quantizer is realized as a cascade of an ADC and a DAC.
How do the nonidealities of these constitutive blocks affect the quantizer, and MOD1 itself?

An ideal ADC should have uniformly spaced thresholds. In practice, however, these
are shifted from their ideal values, causing the treads to have varying widths. This nonide-
ality can be modeled as an error sequence e at the input of the ADC, as shown in Figure
2.29(a).

All output steps of a DAC should ideally be equal. In reality, this is not the case, due
to variability in components used in the DAC. This nonideality is likewise modeled as an
an error signal e added to the DAC output, as illustrated in Figure 2.29(b).

The model of MOD1, including these errors, is given in Figure 2.29(c). From the
figure, it is apparent that eadc should not be a cause for worry; after all, eadc adds to the
quantization error introduced by the ADC, and it will therefore be shaped by the negative-
feedback loop just like the quantization error.

edac is problematic, however, as it cannot be distinguished from the input u and so
degrades the in-band SQNR. This is in line with our general experience that the transfer
function of a negative feedback system is largely determined by the feedback element
(when the loop gain is large). In parlance, eadc is noise-shaped whereas edac is not.

This particular form of the integrator transfer function is chosen so as to have a “clean” NTF of the form
(1 1).
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Figure 2.29 (a) Nonidealities (threshold shifts) in the ADC can be modeled as an additive sequence
e (b) Nonuniform levels of the DAC can be modeled as an error e at its output. (c) Modeling
ADC and DAC errors on MOD1.

2.4.3 The Single-Bit First-Order Delta-Sigma Modulator
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DAC
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eoff2

(a)

(b)
k̂

ADC offset DAC error ADC and DAC error

e 1

1 2

(1 1)
e 1

1 2

(1 1)

Figure 2.30 (a) Quantizer characteristics with ADC and DAC nonidealities in a 2-level modulator
and (b) MOD1 with practical nonidealities.

With a single-bit modulator, the ADC threshold error (eoff1) is equivalent to a dc
offset. The DAC levels, ideally supposed to be 1, are of the form (1 1) and (1 2).
The resulting quantizer characteristic is shown in Figure 2.30(a). Thus, can be related to

by
k̂ sign( eoff1) eoff2 (2.28)
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where
k̂ 1 1 2

2
(2.29)

and
eoff2

2 1
2

(2.30)

The resulting MOD1 model is shown in Figure 2.30(b). eoff1 is of no consequence as it
reduces to zero when referred to the input (due to the infinite dc gain of the integrator).
eoff2, which adds to u, appears as an offset in the input. k̂, which is close to unity since

1 2 1, alters the in-band gain of the STF to 1 k̂.

From the discussion above, we see that component mismatch in a single-bit delta-
sigma modulator causes offset and gain errors, both of which are benign (unlike in the
case with more than two levels). This is a big motivating factor that favors the use of a
two-level quantizer. In fact, this property is so special that the term inherent linearity has
been coined to describe it. There are other benefits – scaling the output of the integrator
has no effect on , since sign( ). A downside, however, is that a higher OSR is
needed to achieve a desired in-band SQNR with 2-level quantization than with more than 2
levels of quantization. This is usually not a problem at low signal bandwidths. A detailed
description of the trade-offs that need to be borne in mind while designing with a single-bit
quantizer is deferred to Chapter 4.

2.5 Nonlinear Aspects of the First-Order Delta-Sigma Modulator

So far, we have built intuition on the linear aspects of the first-order loop. In reality,
however, the quantization noise model is not quite correct, and we should not be surprised
to see deviations from the behavior we expect with linear analysis. Some of these strange
aspects are discussed next. The true behavior of MOD1 is easily determined by time-
domain simulations of the difference equations (2.22). Simulation is an important tool in

modulator design because the linear model is imperfect and can hide important effects
which only become apparent when the true nonlinear nature of the modulation process is
taken into account.

All that is needed to perform such calculations are the samples of the input signal
and the initial condition of the integrator. Once the output sequence has been computed,
its spectrum can be found using an FFT. However, to achieve the high numerical accuracy
needed, several precautionary measures must be used; these are discussed in Appendix A.

As a demonstration that MOD1 really does shape quantization noise, Figure 2.31 plots
the spectrum of the output of MOD1 that employs a 2-level quantizer, when simulated with
a full-scale sine-wave input. This figure clearly shows a noise-shaped characteristic, the
hallmark of modulation, and the 20 dB/decade slope of the noise is consistent with
first-order shaping. However, the simulated SQNR of 55 dB for OSR 128 is 5 dB less
than the value of 60 dB predicted by the linear model. In the discussion in the rest of this
section, we assume that M 1 unless mentioned otherwise.

Figure 2.32, which plots the simulated SQNR versus the input amplitude for two
different test frequencies, gives a clue as to the source of this SQNR discrepancy. As
this figure demonstrates, the simulated SQNR of MOD1 is an erratic function of the input
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amplitude and frequency. Clearly, the dynamics of MOD1 are not as simple as the linear
model would lead us to believe.
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Figure 2.33 In-band quantization noise power versus the dc input level for MOD1. The broken
line marks the noise power averaged over all input values. (a) OSR 32 and (b) OSR 64.

As a further demonstration of the complexity lurking in MOD1, Figure 2.33 plots
the simulated in-band noise power as a function of the value of a dc input for two values
of OSR. Also shown are the mean-square levels of the in-band noise, averaged over all
input values. Both plots show that MOD1 exhibits increased in-band noise in the vicinity
of certain input values, in particular 1 and 0. Comparing Figure 2.33(a) with Figure
2.33(b), we see that as OSR is increased, the widths and absolute heights of the anomalous
regions decrease, but relative to the mean noise level the noise spikes are higher. Candy and
Benjamin [4] showed that the central noise peaks have a height 20 log( 2 OSR) dB and
width OSR 1. Later, Friedman [5] showed that the dominant pattern consists of two large
spikes surrounding a mound of smaller spikes, and that this pattern is duplicated between
adjacent pairs of the smaller spikes in an endless recursion.

This and other exotic behavior is a direct consequence of the nonlinear difference
equations which govern MOD1. Although a thorough study is beyond the scope of this text,
it is possible to state some important results and give some indications of the underlying
mechanisms.

2.6 MOD1 with DC Excitation

As mentioned earlier, the linear model of the quantizer is valid only under specific condi-
tions (large and fast random variations) on the input to the quantizer, which can only be
satisfied if the input u to the loop meets similar conditions. In this section, we shall dis-
cuss the behavior of MOD1 for an important case in which these conditions are violated,
namely the case of a constant input signal.
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u
1

1 1

STF U (NTF 1)E

Figure 2.34 is linearly related to u and e .

2.6.1 Idle Tone Generation

Consider MOD1 with a two-level quantizer, and excited by a dc input u, as shown in Figure
2.34. Despite the nonlinear quantizer, we saw earlier that is linearly related to u and
e , so we can write

Y (z) STF(z)U (z) (NTF(z) 1)E(z)

where STF(z) z 1 and NTF(z) (1 z 1). In the time domain, after recognizing that
[n] sign( [n]), this translates to

[n] u[n 1] ( [n 1] sign( [n 1])) (2.31)

The exotic behavior of MOD1 can be captured in the single first-order nonlinear difference
equation above.

If MOD1 is stable, in the sense that [n] does not reach as n , it must follow
that u . If this were not true, the average difference between u and would keep
accumulating and eventually become infinite.

For example, assume that u 1 2. If [n] is positive, then [n] 1 and is decre-
mented by (u ) 1 2. If [n] is negative, then [n] 1 and is incremented by 1 5.
Starting at [0] 0 1, the operation of MOD1 with u 0 5 is tabulated in the table below.
Clearly, for n 4, the same conditions exist as for n 0. Hence, the output is periodic
with a period of 4.

n 0 1 2 3 4
[n] 0.1 0.4 1.1 0.6 0.1
[n] 1 1 1 1 1

Table 2.2 MOD1 operation for u 1 2.

The average value of for a full period is (1 1 1 1) 4 1 2, which is identical
to the input u. This is expected, since MOD1 is capable of converting a dc input signal
with unlimited accuracy, provided that it is allowed to operate for unlimited time, and
is followed by a perfect lowpass filter. For the input under consideration, the output is
periodic with period 4, and so contains tones at f 4 and its harmonics, which will be
removed by the lowpass filter.

The reader should repeat the calculation for different values of [0] to verify that the
output will again be periodic with a period of 4, and that [n] 2. Over a period of 4
samples, the output will always contain three 1s and one 1. The order in which they
occur will depend on [0].
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Consider now the more general case where the input is a constant rational number:
u a b. Assume that 0 a b, and that a and b are odd positive integers with no
common factor. The initial value [0] is given, with [0] 1. Let the first b output
samples of contain (a b) 2 samples of 1, and ( a b) 2 samples of 1. Then the
average value of in this set is a b, the same as u. The total net input to the integrator for
the first b samples is zero. Hence, after the bth sample, the value of will be again back at
[0]. The sequence will, therefore, be repeated during the next b samples, and a periodic

sequence with a period b will be generated.

If u a b with one of a or b even so that (a b) is odd, it can be easily shown that
again a periodic sequence results, with a period 2b containing (a b) 1s and (b a) 1s.
For a negative input u, the output is the negative of the above given the positive input u.

Assume now that MOD1 has an output that is periodic with a period p, containing
m samples of 1 and (p m) samples of 1 in each period. The average output for each
period will be (2m p) p, a rational number. Hence, the (constant) input must equal this
value, and must also be rational.

Thus, a periodic output with a constant input u ( u 1) implies that u is rational. It
follows that if u is constant but irrational, so the output of MOD1 cannot be periodic.

The periodic sequences generated by rational dc inputs are sometimes called pattern
noise, idle tones, or limit cycles. They do not represent instability of the loop; their am-
plitude does not change with time but is a complicated function of u. Their frequency also
depends on the input, as discussed above.

It is important to examine the effect of limit cycles on the in-band noise of MOD1.
In the numerical example discussed above, the output spectrum contains a line at dc, cor-
responding to the average value of . This represents the digital equivalent of the dc input
u, and is thus the desired signal. In addition, there will be spectral lines at f 4 2 f 4,
and 3 f 4 that represent noise. Since the cutoff frequency f of the digital lowpass filter
following the loop typically satisfies f f (2 OSR) f , these lines are in the stop
band of the filter, and are hence harmless.

Unfortunately, the situation is not always so rosy. Assume that the input is the rational
dc value u 1 100. Now the argument presented above shows that the output signal will
contain tones at f 200 and its harmonics. Several of these will usually be within the
passband of the digital filter, and hence deteriorate the SNR. (A detailed analysis shows
that the output sequence will contain an alternation of the values 1 and 1 for 101 periods;
the 1 that would have occurred at sample 102 is changed to 1 due to the accumulation
of u in the integrator so that two 1s occur in a row. Then the alternation resumes until
sample 199, when again a 1 becomes a 1 so that two 1s occur in succession. A quick
calculation confirms that the average of the output over 200 samples is (101 99) 200
2 200 u, as expected. The output spectrum can be visualized by observing that the
output is equivalent to a sampled sine wave of frequency f 2 modulated by a square wave
with a frequency of f 200 and a 50.5% duty cycle.)

As mentioned earlier, both the frequency and power of the tones are functions of the
dc input u, so is the in-band noise that they introduce. Figure 2.33 shows the variation of
in-band noise power for MOD1 with u for OSR 32 and for OSR 64. As the figure
shows, large peaks occur near simple rational values, such as u 0 1 2 and 1 3
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In some applications, such as in digital audio, idle tones cannot be tolerated, since
the human hearing apparatus can detect tones even 20 dB below the level of any white
noise present. The prevention of tone generation is, therefore, an important aspect of

modulator design, one that often motivates the use of high-order modulators or dither,
an added pseudo-random signal.

Idle tones may also be generated in the presence of slowly varying input voltages,
which stay near a critical level (a simple rational value) long enough for a limit cycle to
become apparent. This is particularly likely to occur for low-order modulators, such as
MOD1.

2.6.2 Stability of MOD1

Linear analysis would predict unconditional stability for MOD1, since the pole of the sys-
tem is located at z 0, well within the unit circle. This prediction, however, does not take
into account the actual signal processing performed by the quantizer. Hence, time-domain
considerations, taking into account nonlinearities, are required.

Consider the stability of the loop under dc excitation, assuming a two level quantizer
(M 1). It is obvious that the loop becomes unstable, and specifically becomes un-
bounded, if u 1 For example, if u 1 3, the DAC will try desperately to balance u by
feeding back a signal 1 every time. Even so, a net input of 0 3 will enter the integrator in
every clock period, until grows so large that the circuit becomes dysfunctional.

Vice versa, if u 1 and the initial value of satisfies [0] 2 , then the loop
will remain stable, with bounded by 2. This stability condition is sufficient even for
time-varying u and is readily established as follows. Despite the nonlinear quantizer, we
have seen that is linearly related to u and e , allowing us to write

Y (z) STF(z)U (z) (NTF(z) 1)E(z)

where STF(z) z 1 and NTF(z) (1 z 1). In the time domain, after recognizing that
[n] sign( [n]), we can translate to

[n] u[n 1] ( [n 1] sign( [n 1])) (2.32)

indicating that
[n] u[n 1] [n 1] sign( [n 1]) (2.33)

If [0] 2 , then [0] sign( [0]) 1. Consequently, if u 1, then [1] 2.
Continuing the recursion, [n] 2 for all n.

If [0] 2 and u 1, then the modulator output will contain a string of 1s (if
[0] 2 ) or 1s (if [0] 2) and will monotonically decrease until it is less than

2, at which point the condition of the preceding paragraph will hold and will remain
bounded by 2. Thus, it is clear that MOD1 is stable with arbitrary inputs less than or equal
to 1 in magnitude, and that it is able to recover from any initial condition.

2.6.3 Dead-Zones

Another interesting (and undesirable) phenomenon, which is a consequence of finite inte-
grator gain and the nonlinear nature of the quantizer, is the occurrence of dead-zones in
for small values of u.
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We first analyze MOD1 with an ideal integrator and extend the intuition built here
to the case of a lossy integrator. A two-level quantizer is assumed. Figure 2.35(a) shows
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Figure 2.35 (a) MOD1 with u 0. A large does not disturb . (b) With a damped integrator,
can be referred to the input.

MOD1 with u 0. Assume that initially [0] 1 2. , which is initially zero,
is an offset we deliberately add at the output of the integrator. Since u 0, must be

zero; or else will eventually go to . It is easy to see that is the repeating sequence
1 1 1 1 , and can be expressed as cos( n). When fed back, the resulting in

steady state is

[n]
z 1

1 z 1 cos( n)
1
2

cos( n)

Since si n( [n]) [n], this forms a consistent solution to the equations describing
MOD1. Let us now increase , as shown in the figure. It is apparent that as long as

0 5, does not change, since is the sign of .

We next examine MOD1 when the integrator is lossy, as shown in Figure 2.35(b), with
u 0 and [0] 0. Further, we assume that is initially zero. As in the discussion
above, we see that is the repeating sequence 1 1 1 1 . in steady state is

[n]
pz 1

1 pz 1 cos( n)
p

1 p
cos( n)
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Again, since si n( [n]) [n], this is a consistent solution. We now notice that as long as
p (1 p) the sequence does not change and remains zero, since is the sign

of .

The integrator, however, is lossy and has a dc gain of A p (1 p). This means that
adding at the output of the integrator is equivalent to adding (1 p) p at MOD1’s
input. Since p (1 p) has no effect on , it follows that small dc inputs

u
1 p

1 p

1
2A

result in 0.

1 5 1 0 5 0 0 5 1 1 5
u (mV)

(m
V

)

1

0 5

0

0 5

1

1 5

Figure 2.36 for small dc u for MOD1. The width of the deadzone is 1 A.

The conclusion is that with finite opamp gain, inputs smaller than 1 (2A) in normal-
ized value will have no effect on the output. For example, if A 1000 and Vref 1 V ,
then dc signals less than 0.5 mV will not register in the output. There is thus a dead-zone

or dead-band around u 0 if MOD1 uses a leaky integrator. It can be shown that similar
dead-zones exist around all rational values of u, and that with the exception of the dead-
zones around u 1, these other dead-zones are narrower than the one around u 0.
Figure 2.36 plots the simulated average output, , of MOD1 for dc values around zero
when A 1000. This figure shows that the width of the dead-zone is as predicted, and that
the error quickly decays to a value much less than 0.5 mV for inputs outside the dead-zone.

Another consequence of the finite amplifier gain concerns the limit cycles of MOD1.
The limit cycles displayed by an ideal MOD1 with a dc input are unstable, or non-
attracting, because arbitrarily small shifts in the input eventually lead to large changes
in the integrator state, and hence a different output pattern. However, if the NTF zero is
inside the unit circle, the resulting limit cycles are stable, or attracting, because sufficiently
small shifts in the input lead to small changes in the integrator state, and no change occurs
in the output pattern. This is a detrimental effect, since limit cycles are usually undesirable.

The feedback values are ref .
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2.7 Alternative Architectures: The Error-Feedback Structure

u

z 1 e

H (z) z 1

1

Figure 2.37 MOD1 implemented using an error-feedback architecture.

As an example of a circuit that looks simple and hence attractive, but is nonetheless
problematic for analog loops, we will next consider the so-called error-feedback struc-

ture shown in Figure 2.37. We saw this in the context of our coffee shop example in
Chapter 1. Here, the quantization error e is obtained in analog form by subtracting the
internal ADC’s input from the DAC output; e is then fed back to the input through a filter
H . The output signal in the z-domain is

V (z) E(z) U (z) H (z)E(z) (2.34)

Hence, STF(z) 1 and NTF(z) 1 H (z). To obtain NTF(z) (1 z 1), clearly
H (z) (1 z 1) 1 z 1 is needed. This is readily realized, as shown in Figure 2.37.

Despite its attractive simplicity, the structure is problematic for analog implementa-
tion, since it is sensitive to variations of its parameters. Assume that the subtractor real-
izing ( ) has a +1% error, so that 1 01 e is fed back. Then the actual NTF will be
(1 z 1) 0 01z 1 At very low frequencies, instead of 0, the magnitude of e will then
equal 0.01, or 40 dB. Hence, even with careful analog design, the achievable ENOB will
typically be less than 12 bits for ADCs with a single-bit quantizer, even for OSR 1000.
By contrast, comparable parameter changes still allow 15-bit resolution for the structure
of Figure 2.26 at OSR 1000. The error-feedback structure is thus of limited utility in

ADCs – however, it has found favor in noise-coupled ADCs, the principle of which
will be presented in Chapters 3 and 5.

The error-feedback structure is very useful, and is often applied, in the digital loops
required in DACs, where the subtraction is exactly realized. This topic will be dis-
cussed in detail in Chapter 13.

2.8 The Road Ahead

So far in this text, we have seen how oversampling a signal can reduce in-band quantization
noise. The benefit of only oversampling is modest, at 0.5 bit for every doubling of the OSR.
We found that we could do better by shaping quantization noise out of the signal band by
using negative feedback. The result of this was the first-order modulator (MOD1),
which yielded 1.5 more bits for every doubling of the OSR. A natural question to ask is if
we can do better than MOD1. This leads us to the second-order modulator, which is
discussed in the next chapter.
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CHAPTER 3

SECOND-ORDER DELTA-SIGMA
MODULATION

In our analysis of MOD1, we saw its in-band SQNR can be improved by employing a
quantizer with more levels. This way, the step size of the quantizer is reduced in relation to
its full-scale. In the frequency domain, increasing the number of levels reduces the spectral
density of the quantization noise (normalized to full-scale) over the entire frequency range
[0 ], which in turn enhances the SQNR.

Another way of improving MOD1’s resolution is to use a quantizer whose in-band

quantization noise spectral density is small, rather than increasing the number of levels
(which reduces noise spectral density at all frequencies). The simplest quantizer that can
do this is MOD1 itself. This suggests that replacing the quantizer in MOD1 by another
instance of MOD1 should enhance noise-shaping. The resulting modulator is shown in
Figure 3.1(a) – the portion enclosed in the gray box is the first-order modulator, which has
taken the place of the quantizer.

We see that
V (z) Y1(z) (1 z 1)E(z) (3.1)

which is of the same form as that associated with a quantizer, except that E(z) has been re-
placed by its first-order noise-shaped version (1 z 1)E(z), as shown in Figure 3.1(b). This
means that the input, output, and the quantization error of the arrangement in Figure 3.1
are related by

V (z) U (z) (1 z 1)2E(z) (3.2)
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MOD1

[n]

z 1

1
1 1u[n] 1

z 1

(1 z 1)E(z)

1
1 1

1
1 1

z 1

u[n]

V (z) Y1(z) (1 z 1)E(z)

[n]

(a)

(b)

Figure 3.1 (a) Synthesis of a second-order modulator and (b) equivalent representation.

Quantization noise is therefore shaped out of the signal band by a second-order highpass
filter. This loop is, therefore, called the second-order modulator, and is affection-
ately referred to as MOD2. An equivalent modulator, where the delays have been pushed
into the integrators, is shown in Figure 3.2.

1

-2

[n]1
1 1u[n] 1 1

1 1

h[n]

Figure 3.2 MOD2 with feedback delays pushed into the integrators, and the impulse response
corresponding to the NTF.
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Straightforward analysis of Figure 3.2 shows that

STF z 1

NTF(z) (1 z 1)2 (3.3)

As expected from our discussion on the infeasibility of delay-free loops in Section 2.4, we
see that the first sample of the impulse response corresponding to the NTF is h[0] 1.
Due to the zeros at z 1, 0 h[n] 1 2 1 0.

At low frequencies, the magnitude of the NTF is approximately 2. The in-band noise
is thus given by

IBN
2

12
OSR

0

4d
2

60 OSR
5

(3.4)

which is proportional to OSR 5. Doubling the OSR, therefore, increases the SQNR by
15 dB or 2.5 bits – compare this with 1.5 bits in the first-order case, and only 0.5 bit without
noise-shaping.

The peak in-band SQNR achievable with an M-level quantizer is

SQNR
15M2(OSR)5

2 4 (3.5)
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Figure 3.3 NTF magnitudes of MOD1 and MOD2 on (a) linear and (b) log scales.

Figure 3.3 compares the magnitudes of the NTFs of MOD1 and MOD2. The log plot
places in evidence the second-order nature of the NTF of MOD2: we see a 40 dB/dec.
slope at low frequencies.

The reduction in in-band gain of the NTF of MOD2 when compared to that of MOD1
is accompanied by an increase in the out-of-band gain. The gain at for MOD1’s
NTF is 2, while that in MOD2 is 4. One should therefore expect to see a lot more variation
from sample to sample in MOD2’s output, as confirmed by the waveforms in Figure 3.4.
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Figure 3.4 Representative input and output sequences for (a) MOD1 and (b) MOD2, 1 8.

Though the in-band quantization noise in MOD2 is reduced compared to MOD1, the
total quantization noise (i.e integrated over the entire bandwidth [0 ]) has increased, and
is given by

2

12 0
NTF(e ) 2 d

2

12 0
h2[n] 6

2

12
(3.6)
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Figure 3.5 Theoretical SQNR versus OSR for MOD1 and MOD2 with a two-level (M 1)
quantizer.

Figure 3.5 compares the theoretical SQNR versus OSR performance of MOD2 with
that of MOD1 for a two-level quantizer. As an example of the achievable ENOB, let
OSR 128. Then, (3.5) yields SQNR = 94.2 dB, which corresponds to nearly 16-bit
resolution. If the ADC is used to convert audio signals, so that f 20 kHz, the clock rate
needed will be f 2 OSR f 5 12 MHz, a highly practical value. To achieve the
same resolution with MOD1, (2.23) predicts that an OSR 1800 would be needed. This
necessitates the use of f 72 MHz, which would make the implementation unnecessarily
difficult.
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Figure 3.6 The quantizer input of MOD2 consists of u with shaped noise riding over it. 1 8.

It is instructive to examine the signal that drives the quantizer embedded in MOD2.
Refer to Figure 3.2, where is seen to be ( [n] e[n]) Since the magnitude of the STF
at low frequencies is unity, [n] consists of the input plus quantization noise shaped by
NTF(z). Y (z) is thus given by

V (z) STF(z)
1

U (z) NTF(z)E(z)

Y (z) V (z) E(z)
z 1U (z) (NTF(z) 1)E(z) (3.7)

Since NTF(z) 1 2z 1 z 2, the mean square noise on is ( 2 12) 12 22 5( 2 12)
Representative waveforms are shown in Figure 3.6.

If binary quantization is used, MOD2 has the same inherent linearity property as
MOD1. Like MOD1, the linearity of MOD2 is not jeopardized by comparator non-
idealities, such as offset or hysteresis, since these errors are injected into the loop at the
same point as the quantization noise and are thus also attenuated by the NTF. Slight shifts
in the loop filter coefficients are similarly benign, since these translate into small shifts in
the pole locations of the NTF and STF, rather than into nonlinearities.

3.1 Simulation of MOD2

As with MOD1, the validity of the assumptions that lead to analytical SQNR predictions
for MOD2 are best checked by performing simulations based on the modulator’s difference
equations. With a many-level quantizer, the output sequence straddles u, as shown in
Figure 3.4. With a two-level quantizer, the output is binary as shown in Figure 3.7,
which illustrates the input and output waveforms for MOD2 with a half-scale sine-wave
input, with a two-level quantizer. As is typical in systems, these waveforms provide
very little insight into the system’s behavior when viewed in the time domain. Only crude
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Figure 3.7 MOD2 input and output waveforms for a two-level quantizer.

observations can be made, such as the increased tendency for the output to be 1 when the
input is positive and 1 when the input is negative. However, by viewing the modulator
output in the frequency domain, a much clearer picture emerges.
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Figure 3.8 Output spectrum of MOD2 with a 6 dBFS sine-wave input.

The spectrum shown in Figure 3.8 clearly exhibits noise-shaping, and the 40 dB/dec.
slope confirms the second-order nature of the shaping. For an oversampling ratio of 128,
integrating the PSD yields SQNR 86 dB and extrapolating from this value to the SQNR
for a full-scale input results in a predicted peak SQNR of 92 dB. This is in close agree-
ment with the theoretical result of 94 dB predicted by (3.5). However, Figure 3.8 displays
two features that are not in agreement with our model. First, the second and third har-
monics of the signal are distinctly visible, having amplitudes of 88 dBFS and 90 dBFS,
respectively. Since white quantization noise cannot produce harmonics of the signal, this
simulation result is inconsistent with the white-noise model. Second, the figure shows a
plot of MOD2’s NTF, scaled by ( 2 12) 2NBW, so that it should align with the observed
PSD. The theoretical curve is similar to the observed PSD, but has a corner frequency that
is higher than that of the observed PSD. The higher corner frequency makes the theoretical

NBW is an abbreviation for noise bandwidth. See Appendix A for a discussion of the importance of NBW in
the context of a PSD plot.



SIMULATION OF MOD2 69

PSD somewhat lower at low frequencies and somewhat higher at high frequencies than the
observed PSD.
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Figure 3.9 (a) Pole-zero plot of the NTF of MOD2 if the quantizer gain is k 0 63; (b) comparison
of corresponding PSD with simulation.

To account for the harmonics, a nonlinear quantizer model is needed. Such a model
will be presented in the next section. To account for the shift in NTF shape, it is sufficient
to evaluate the effective quantizer gain from simulation. Applying (2.14) to the simulation
data yields k 0 63, and recomputing the NTF for this value of k results in the pole-zero
and PSD plots shown in Figure 3.9. Now the agreement between the observed PSD and
that “predicted” by the linear model is very good.

When the input amplitude is lowered, simulations show that the optimal value of the
quantizer gain changes slightly, and is approximately k 0 75 for inputs that are less than

12 dBFS. Thus, simulations indicate that a more accurate NTF for MOD2 with small
inputs can be derived if it is assumed that k 0 75, rather than one. What is the effective
NTF if k is not 1?

We denote the NTFs associated with quantizer gains of 1 and k by NTF1 and NTF ,
respectively. Denoting the transfer function from to by L1(z), we see that

NTF1(z)
1

1 L1(z)
(3.8)

If the gain of the quantizer was k instead, with quantization noise being added after this
gain, the resulting NTF would be

NTF (z)
1

1 kL1(z)
(3.9)

Using (3.8) and (3.9), we obtain

NTF (z)
NTF1(z)

k (1 k)NTF1(z)
(3.10)

Applying (3.10) with k 0 75 yields the improved estimate of MOD2’s NTF:

NTF(z)
(1 z 1)2

1 0 5z 1 0 25z 2 (3.11)

Since this NTF has an in-band gain 2.5 dB above that of NTF1(z) (1 z 1)2, the
in-band noise power seen in simulation should be about 2.5 dB higher than that predicted
from NTF1.



70 SECOND-ORDER DELTA-SIGMA MODULATION

-100 -80 -60 -40 -20 0

20

40

60

80

100

Input amplitude (dBFS)

Theory

High-frequency input

Low-frequency input

S
Q

N
R

(d
B

)

Figure 3.10 Simulated SQNR of MOD2 with OSR 128.

When the input amplitude exceeds half of full-scale, the optimal quantizer gain de-
creases, degrading the noise-shaping further and increasing the difference between the
expected and simulated SQNR. To illustrate this, Figure 3.10 plots the SQNR of MOD2
as a function of the input amplitude, for two different test frequencies, and compares the
simulation results against the predictions of the unity-gain white-noise quantizer model.
The simulation data follows that expected from theory quite closely over the middle por-
tion of the amplitude range. For small inputs, the observed SQNR is somewhat lower
than predicted, with the result that 0 dB SQNR requires a larger input than expected. For
large input amplitudes, the SQNR of MOD2 saturates, peaking for inputs in the vicin-
ity of 5 dBFS, and then dropping abruptly as the input amplitude approaches full-scale.
The largest degradation in SQNR occurs for low-frequency full-scale signals because these
signals apply large values for extended periods of time to the input of MOD2. Comparing
Figure 3.10 with the corresponding one for MOD1 (Figure 2.32), we see that the SQNR of
MOD2 is more well-behaved than MOD1, except for the aforementioned saturation under
large-signal conditions.

3.2 Nonlinear Effects in MOD2

The simulations of MOD2 presented above confirm the essential insights provided by the
linear model, but also exhibit anomalies that can only be explained with nonlinear models.
Unfortunately, the dynamics of MOD2 with a binary quantizer are much more complex
than those of MOD1 and defy exact analysis. In light of the intractable dynamics, it is rea-
sonable to use approximate and/or empirical techniques to explain the observed behavior
of MOD2.

3.2.1 Signal-Dependent Quantizer Gain

As Section 2.2.1 described, the gain of a binary quantizer is indeterminate. Moreover, the
simulations of the previous section suggest that, in the case of MOD2, the quantizer’s gain
is in fact signal dependent. A model for MOD2 that includes this signal-dependent gain (a
nonlinear effect) is depicted in Figure 3.11.
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Figure 3.11 MOD2 model incorporating quantizer nonlinearity.

In this figure, the quantizer is replaced by a weak nonlinearity, the quantizer transfer
curve (QTC), plus additive noise. The QTC is determined by computing the average quan-
tizer output as a function of the average quantizer input, while the dc input signal is swept
across its range. Figure 3.12 shows the QTC determined by simulations. This figure shows
that the QTC is compressive, meaning it exhibits reduced gain when the magnitude of its
input is large. Figure 3.12 also plots a cubic approximation to the quantizer nonlinearity,

k1 k3
3, and lists the (k1 k3) coefficients of this approximation. We can use these

coefficients to estimate the distortion induced by the QTC as follows.
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Figure 3.12 The quantizer’s “average” transfer characteristic is obtained by plotting as a function
of .

First, determine the effective NTF of the modulator by using k k1 as the effective
the quantizer gain:

NTF 1

(1 z 1)2

1 0 775z 1 0 3875z 2 (3.12)

Next, since the distortion term k3
3 is added at the same place in the loop as the

quantization error, we conclude that the spectrum of the distortion is shaped by NTF 1 .
Thus, distortion is greatest for frequencies where the NTF gives the least protection, that
is, when the distortion term lies at the edge of the passband. For the spectrum of Figure 3.9,
the input signal is located at f f 500, and thus the third harmonic is at a normalized
frequency of 3 f 0 006, where the attenuation provided by NTF 1 is about 53 dB.

For a small low-frequency sine-wave input of amplitude A, the local average of the
output follows the input, and thus, according to the linear model, the local average of the
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quantizer input is also a low-frequency sine-wave, but of amplitude A k1. The amplitude
of the third harmonic induced by the QTC is k3(A k1)3 4, from which it follows that the
third harmonic distortion is

HD3
k3 A2

4k3
1

NTF 1 (z) (3.13)

where z e 2 (3 ) . Evaluating (3.13) under the conditions of Figure 3.9 (A 0 5 f

1 500) yields HD3 87 dB. Since this calculated value is about 5 dB short of the ob-
served value of 82 dB, the distortion estimate provided by the calculation above can only
be considered a rough approximation. The discrepancy is greatest when the input is large
and the distortion is severe.
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Figure 3.13 Simulated in-band quantization noise power for MOD2 as a function of dc input level.

Returning now to our empirical study of MOD2’s behavior as its input is varied, Fig-
ure 3.13 plots the in-band quantization noise power of MOD2 (with binary quantization)
versus the dc input level for oversampling ratios of 32 and 64. Comparing these plots with
those for MOD1 (Figure 2.33), we immediately note that the numerous spikes associated
with periodic behavior in MOD1 are now absent, and thus conclude that MOD2 is more
resistant to tones than MOD1. However, as the expanded view around u 0 in Figure 3.13
illustrates, MOD2 still exhibits vestiges of this undesirable behavior.

A second feature apparent in the plots of Figure 3.13 is the U-shape of the in-band
noise power, which culminates in very large noise peaks as u 1. Even over the range
u 0 7, (i.e., for inputs less than 3 dBFS), the in-band noise varies by about 6 dB. The

bulk of this behavior is accounted for by the signal-dependent quantizer gain (and hence
signal-dependent NTF) of MOD2. As the input increases in magnitude, the quantizer gain
decreases, reducing the loop gain and hence the effectiveness of the noise-shaping. As a
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result, the noise at the output of MOD2 increases with signal level. In the terminology
of stochastic processes, this property makes the quantization noise of MOD2 with a large
deterministic input nonstationary. Specifically, when the absolute value of the signal is
large, the quantization noise power is also large, and thus the statistics of the quantization
noise are time-varying.

3.3 Stability of MOD2

The preceding section used a combination of simulation and quasi-linear modeling to ex-
plain several of the nonlinear aspects of MOD2. In this section, results from the literature
regarding the stability of MOD2 with a dc input are presented.

1
1 1

x2

x1

u

z 1

z 1

2

Figure 3.14 Model used to establish bounds on state variables in MOD2.

Hein and Zakhor [1] have shown that if MOD2 is constructed as in Figure 3.14, so
that the difference equations are

[n] sign( [n]) sign(x2[n])

x1[n 1] x1[n] [n] u

x2[n 1] x1[n] x2[n] 2 [n] u

then for dc inputs u satisfying u[n] 1 the following bounds apply:

x1 u 2 (3.14)

x2
(5 u )2

8(1 u )
(3.15)

Figure 3.15 plots these bounds along with values found by simulation. As this figure
shows, the analytic bounds are fairly tight for u 0 7, but the analytic bound on x2
“blows up” more quickly than do the simulation results as u 1. Since x2 is (a delayed
version of) the quantizer input, Figure 3.15 once again demonstrates that the input to the
quantizer in MOD2 becomes large as the input approaches full-scale.

According to (3.14) and (3.15), the internal states of MOD2 are guaranteed to be
bounded for dc inputs less than 1 in magnitude, although the bound on x2 does become
arbitrarily large as u 1. Since MOD2 tracks the low-frequency content of its input,
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Figure 3.15 Comparison of analytic state bounds with simulation for MOD2.
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Figure 3.16 A hostile input with u 0 3 can drive MOD2 “unstable”.
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one might assume that arbitrary time-varying inputs satisfying u[n] 1 for all n would
lead to bounds similar to those for dc inputs. However, as Figure 3.16 illustrates, an input
waveform with u 0 3 can lead to large internal states if the waveform is chosen appro-
priately. The input waveform shown in Figure 3.16 predominantly oscillates between 0 3
and 0 3, and it does so with just the right phase and period so as to drive the modulator
state into ever-increasing oscillations. Furthermore, the values at the transitions are chosen
so as to maximize the excursion of the internal oscillations. Fortunately, such a waveform
is unlikely to be encountered in practice, and even if it were, it is even more unlikely that
it would be precisely synchronized with the modulator’s internal dynamics the way the
waveform in Figure 3.16 is. It is known that MOD2 is stable for arbitrary inputs less than
0.1 in magnitude, but the upper limit on the input amplitude for which stable operation is
guaranteed is not known.

The preceding discussion shows that MOD2 is “less stable” than MOD1. Although
the stability of MOD2 with dc inputs less than 1 in magnitude has been rigorously estab-
lished, the states may become arbitrarily large as u 1. It is therefore wise to limit the
input of MOD2 to 0.9, if possible, so that the state of the second integrator is not unduly
large. Unfortunately, even though such an input limit will keep the modulator state rea-
sonable for dc and slowly varying inputs, it is possible for the modulator state to become
much larger than intended. It is therefore important to include means for detecting overly
large states and for placing the modulator in a “good” state.

3.3.1 Dead-Zones

Section 2.4.1 showed that when the dc gain of the integrator is finite, the zero in MOD1’s
NTF shifts from z 1 to z p, where (1 p) is (approximately) inversely proportional to
the integrator’s dc gain, A. This shift in the NTF zero creates dead bands in the response
of MOD1 to dc inputs; the most troublesome of these dead bands is the one centered on
u 0, the width of which was calculated to be 2 A.

a

a

off

1
a off

a 3 4

u
1

1 11 1

offoff (1 p)2 p2

Figure 3.17 Origins of the dead-zone around u 0 in MOD2 when the integrators have finite gain
A p (1 p).
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How does finite integrator gain cause dead-zones in MOD2? The analysis proceeds
as with MOD1, and is illustrated using Figure 3.17. off is an externally added offset, and
it is initially zero. The transfer function from to is

L1(z)
p2z 1

(1 pz 1)2
pz 1

1 pz 1 (3.16)

When u 0, it is easy to see that is the periodic sequence 1 1 1 1 cos[ n].
, in steady state, is given by

[n] L1(z) 1 cos[ n]
p(2p 1)
(p 1)2 cos[ n]

3
4

cos[ n] (3.17)

The approximation in the equation above is valid since p 1. Since off 0, the quan-
tizer input is (3 4) cos[ n], and sign( [n]) [n], which is consistent with the constraint
imposed by closing the loop.

If we now deliberately introduce a nonzero offset off , we see that the output sequence
is not disturbed as long as off (3 4). Adding off at the quantizer input is equivalent

to adding

u
off

p2

(1 p)2

dc gain from u to y

(3.18)

at the modulator’s input. Since p (1 p) A, we see that the average of the output
sequence of MOD2 will remain zero as long as

u
3
4

1
A2 (3.19)

Thus, the impact of finite integrator gain is drastically reduced because the open-loop
gain of the loop filter is proportional to A2.
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Figure 3.18 for small dc u for MOD2. The width of the deadzone is 1 5 A2.

To verify the preceding calculation, in Figure 3.18, we plot the average value of the
output of MOD2 for small dc inputs; the poles of the loop filter are located at z 0 99 with
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A 100. The observed width of the dead band is identical to our estimate. Furthermore,we
see that, as with MOD1, inputs outside the dead band are accurately represented by the
average output of MOD2.

The gain-squaring nature of the two-integrator cascade found in MOD2 is responsible
for MOD2’s increased tolerance of finite opamp gain and reduced susceptibility to tones
relative to MOD1. Also, as noted earlier, MOD2 possesses a vastly superior SQNR/OSR
trade-off. Aside from the added analog complexity, the main drawback of MOD2 is re-
duced stability, which is manifested in a practical input range that is about 80% to 90% of
the potential full-scale range of the converter.

The following section presents alternative realizations of MOD2, as well as a modified
version of MOD2 that offers improved SNR and better stability.

3.4 Alternative Second-Order Modulator Structures

A number of alternative structures exist that can perform a second-order modulation, and
that also give a unity-gain STF (albeit with a delay of one or two clock periods), as well as
the same NTF as the structure shown in Figure 3.1. In devising such structures, care must
be taken to avoid delay-free loops (which are not realizable), and to preserve reasonable
robustness against the unavoidable nonideal practical effects such as element inaccuracies
and finite opamp gain.

Second-order modulator structures that implement lowpass STFs exist, as do struc-
tures that implement NTFs other than plain second-order differentiation. In dealing with
such NTFs, care must be taken to ensure that the resulting modulator is stable. For ex-
ample, converting the delay-free integrators of Figure 3.1 into delaying-integrators and
removing the feedback delay alters the NTF and yields a marginally stable system.

3.4.1 The Boser–Wooley Modulator

[n]1
1

1 1u[n]

b

2
1

1 1

Figure 3.19 A second-order modulator with delaying integrators.

A second-order modulator that contains two delaying integrators [2] is shown in Fig-
ure 3.19. Using delaying integrators is desirable because it allows the opamps in each
integrator to settle independently of each other, thereby relaxing their speed requirements
[3].
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Presuming unity gain for the quantizer, we can use linear analysis to show that the
STF and NTF are

STF(z)
a1a2z 2

D(z)

NTF(z)
(1 z 1)2

D(z)
(3.20)

where
D(z) (1 z 1)2 a2bz 1(1 z 1) a1a2z 2 (3.21)

.

To achieve STF z 2 and NTF(z) (1 z 1)2, we need to ensure that the conditions
a1a2 1 and a2b 2 are satisfied. Since we have 3 parameters and only 2 constraints,
there are many possible solutions. For example, a1 a2 1 b 2, or a1 0 5 a2 2,
and b 1, can be used. In the actual design process, dynamic range scaling (to be discussed
in Section 4.7) removes any ambiguity in finding the parameters needed to implement a
given NTF and STF.

3.4.2 The Silva–Steensgaard Structure

[n]u[n]
1

1 1
1

1 1

1

2

Figure 3.20 A second-order modulator with feedforward paths.

Another useful second-order structure is shown in Figure 3.20 [4, 5]. The distinguish-
ing features of this circuit are the direct feedforward path from the input to the quantizer
and the single feedback path from the digital output. Linear analysis confirms that the
output is given in the z-domain by

V (z) U (z) (1 z 1)2E(z) (3.22)

as before. The input signal to the loop filter is, however, different: it contains only the
shaped quantization noise:

U (z) V (z) (1 z 1)2E(z) (3.23)

Also, as can be seen from (3.23), the output of the second integrator will give
z 2E(z) directly. This is advantageous if the modulator is the input stage of a MASH

structure (discussed in Chapter 5).
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3.4.3 The Error-Feedback Structure

u

z 1z 1

2

e

H (z) 2z 1 z 2

Figure 3.21 MOD2 implemented using an error-feedback architecture.

The error-feedback structure, shown in Figure 3.21, is the second-order analog of the
corresponding structure for MOD1 (Figure 2.37). The output signal in the z-domain is

V (z) E(z) U (z) H (z)E(z) (3.24)

Hence, STF(z) 1 and NTF(z) 1 H (z). To obtain NTF(z) (1 z 1)2, H (z)
(1 z 1)2 1 z 2 2z 1. As discussed in connection with Figure 2.37, this structure is
not particularly suited to analog realization, but it is commonly used in digital loops.

3.4.4 The Noise–Coupled Structure

MOD1

[n]1
1 1u[n] 1

z 1

V (z) Y1(z) (1 z 1)E(z)

z 1 e

Figure 3.22 The noise-coupled MOD2 structure.

MOD2 was realized by replacing the quantizer in MOD1 with a first-order noise-
shaped quantizer (which is MOD1 itself). If MOD1 is implemented as an error-feedback
structure, as shown in Figure 3.22, a noise-coupled MOD2 structure results. When com-
pared to an analog realization of Figure 3.21, this system is more robust with respect to
practical nonidealities, thanks to the first integrator. At the same time, it inherits the
inherent simplicity of the error-feedback structure. This technique has been applied to
high-order modulators, to realize an NTF with an extra order of noise-shaping without the
associated active circuitry.
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3.5 Generalized Second-Order Structures

[n]1
1 1u[n]

b2

1
1 1b1

b3

z 1

Figure 3.23 A second-order modulator with feed-in paths.

The structure of Figure 3.1 gives STF(z) 1 and NTF(z) (1 z 1)2. More general
STFs can be obtained by feeding u not only to the input of the first integrator but also to
the inputs of the second integrator and the quantizer (Figure 3.23). The STF then becomes

STF(z) b1 b2(1 z 1) b3(1 z 1)2 (3.25)

The STF now has two zeros, and a double pole at z 0. In this way, a “free” second-
order FIR signal pre-filter can be incorporated into the ADC.

[n]1
1 1u[n]

b2

1
1 1b1

b3

z 1

a1 a2 a3

Figure 3.24 A second-order modulator with feed-ins and feedback paths.

Similarly, by feeding the output signal back to all three blocks in the forward path
(Figure 3.24), two nonzero poles can be generated in both the STF and the NTF. Thus,
more general STFs and NTFs can be obtained. The new functions are

STF(z)
B(z)
A(z)

NTF(z)
(1 z 1)2

A(z)
(3.26)

where
B(z) b1 b2(1 z 1) b3(1 z 1)2 (3.27)
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and
A(z) 1 (a1 a2 a3 2)z 1 (1 a2 2a3)z 2 a3z 3 (3.28)

Since the feedback term a3 increases the NTF order to 3, but does not increase the number
of in-band NTF zeros, this term is rarely used.

By incorporating both multiple feedforward and feedback features into the second-
order structure, more flexibility is obtained for enhancing stability and improving dynamic
range.

3.5.1 Optimal Second-Order Modulator

Given the variety of modulator architectures shown thus far, the reader might well wonder
which architecture is the best. One part of the answer to this question deals with the
optimal NTF, while the second part of the answer deals with the optimal topology. The
STF is a secondary consideration because the STF merely filters the signal; it plays no role
in determining the peak SQNR. Also, since the choice of the topology is tied more closely
to practical considerations than to fundamental mathematical limits, this section will only
consider the problem of optimizing the NTF.

The first step in finding an optimal second-order modulator is to find the second-order
NTF that yields the highest SQNR, or equivalently, the NTF that minimizes the in-band
noise. For high values of OSR, the magnitude of NTF(z) (1 z 1)2 A(z) in the signal
band is approximately K 2, where K 1 A(1). By shifting the NTF zeros from z 1
to z e , the magnitude of the NTF in the passband becomes K ( )( )
K ( 2 2) . The integral of the square of this quantity over the passband is a measure of

the in-band noise, and it can be minimized by choosing such that

I ( )
OSR

0
( 2 2)2 d (3.29)

is minimized. The solution to this optimization problem can be obtained by differentiating
I ( ) with respect to , and equating the result to 0. This gives

opt
1
3 OSR

(3.30)

Since the ratio I (0) I ( ) 9 4, the expected SQNR improvement is 10 log(9 4)
3 5 dB. Note that these results assume that the quantization noise is white, and that
A(e ) 1 in the [0 OSR] frequency range.

An exhaustive search of the NTF design space for the NTF with the highest peak
SQNR yields the NTF whose SQNR curve is depicted in Figure 3.25. The denominator of
this optimal NTF is

A (z) 1 0 5z 1 0 16z 2 (3.31)

Compared to the SQNR curve of MOD2 shown in Figure 3.10, the SQNR curve associated
with this NTF is more linear and supports signals closer to full-scale without saturating.
As a result, the peak SQNR for this NTF (with OSR 128) is around 94 dB, which is
about 6 dB higher than that of MOD2.
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Figure 3.25 SQNR for an optimal second-order NTF for OSR 128.

3.6 Conclusions

This chapter examined the second-order modulator, MOD2, and several of its variants.
Like MOD1, MOD2 is theoretically able to achieve arbitrarily high resolution for dc inputs,
and is immune to a variety of imperfections. In contrast to MOD1, which displays a 9 dB
increase in SQNR for every doubling of OSR, the SQNR of MOD2 increases at 15 dB
per octave. As a result, MOD2 is able to achieve a given level of performance with a
lower sampling rate than MOD1 would require. Due to the gain-squaring provided by
the two-integrator cascade, MOD2 is also more robust in the face of finite opamp gain
than MOD1. Furthermore, the quantization noise at the output of MOD2 is less likely to
contain tones than the noise at the output of MOD1. In all these areas, MOD2 is markedly
superior to MOD1. The primary drawbacks associated with MOD2 are increased hardware
complexity (both analog and digital) and a slight decrease in the allowable signal range.
Since increasing the order of the NTF seems to have done us a whole lot of good, it seems
natural to explore loops that realize higher order NTFs. This forms the subject of the
next chapter.
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CHAPTER 4

HIGH-ORDER DELTA-SIGMA
MODULATORS

We derived the second-order modulator from the first-order structure by replacing the
quantizer in MOD1 by another instance of itself. In the same spirit, using MOD1 in place
of the quantizer in MOD2 results in a third-order modulator, with an NTF (1 z 1)3, as
shown in Figure 4.1(a). Higher order modulators, with NTFs of the form (1 z 1) , can
be generated in a similar fashion.

1

1 1u 1
1 1

L0

L1

u

1
1 1

(a)

(b)

Figure 4.1 (a) A third-order modulator with NTF (1 z 1)3 derived by replacing the quantizer
in MOD2 with an instance of MOD1. (b) Generic representation of a (high-order) modulator.
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The generic block diagram of a high-order modulator is shown in Figure 4.1(b). The
loop filter processes two inputs – the input to be digitized u, and the modulator output .
The filter’s output drives the quantizer. The transfer functions from u and to are
denoted by L0(z) and L1(z), respectively. In terms of z-transforms,

Y (z) L0(z)U (z) L1(z)V (z) (4.1)
V (z) Y (z) E(z) (4.2)

If V (z) is expressed as

V (z) STF(z)U (z) NTF(z)E(z) (4.3)

it is easy to see that

STF(z)
L0(z)

1 L1(z)
(4.4)

NTF(z)
1

1 L1(z)
(4.5)

A few observations are in order.

a. If the modulator has to be physically realizable, it cannot be delay free. Thus, as in
the case of MOD1 and MOD2, the first sample of the impulse response corresponding
to NTF(z) must be unity. In the frequency domain, this translates to the constraint

NTF(z ) 1 (4.6)

Equivalently, from (4.5),
L1(z ) 0 (4.7)

which means that the first sample of the impulse response of L1(z) must be zero.

b. The STF and NTF have the same denominator, which is the characteristic equation of
the system.

c. From (4.5), we see that the NTF goes to zero when the L1(z) is infinite. This means
that the poles of the loop filter are the zeros of the NTF. The loop filter of a modulator
with an Lth order NTF of the form (1 z 1) should therefore have L poles at z 1.
This indicates that there must be L integrators in the loop, and at low frequencies
(z 1), L1(z) should approach 1 (1 z 1) .

d. The STF at dc (z 1) is usually chosen to be unity. From (4.4), we then have
lim

1
L0(z) lim

1
L1(z).

e. Using STF(1) 1, and assuming a low-frequency input, the input to the quantizer
can be seen to be Y (z) U (z) (NTF(z) 1)E(z). Making the usual (additive
white) assumption about quantization noise, we see that the variance of noise on
is ( 2 12)( h 2

2 1), where

h 2
2

0
h2[n] (4.8)
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The in-band quantization noise for an Lth order NTF (1 z 1) is given by

IBN
2

12
OSR

0

2 d
2

12 (2L 1) OSR
2 1

(4.9)

Doubling the OSR of such a modulator increases its resolution by (L 0 5) bits. It
thus seems as if using NTF(z) (1 z 1) with a sufficiently high L can yield arbitrarily
large SNRs. Now, this sounds too good to be true – and we know that something that
sounds too good to be true, is usually too good to be true. Not surprisingly, modulators
are no exception to this rule. It turns out that Lth order NTFs of the form discussed above
become unstable even for small inputs, thereby severely restricting the ADCs usable signal
range. This brings us to the question of signal-dependent stability of a modulator,
which we discuss next.

4.1 Signal-Dependent Stability of Delta-Sigma Modulators

Before launching into a detailed discussion on this topic, let us recall the following:

a. The expression for in-band noise (4.9) was based on the assumption that quantization
can be modeled as a uniformly distributed, additive, white-noise source. As we saw
in Section 2.2.1, this is largely true when the input signal exciting the quantizer does
not overload it. For an M-level quantizer, this means that its input should not exceed
the range [ M M].

b. The input to the quantizer in a loop consists of two parts – the (low-frequency)
input u, and quantization error shaped by (NTF(z) 1) riding over it, as shown in
Figure 4.2.

L0

L1

u
dc

u

2
2

12 1
h2[n]

Figure 4.2 For a dc input, consists of dc plus shaped noise with variance ( 2 12)
1

h2[n].

Consider now the modulator of Figure 4.2 excited by a small dc input u, for NTFs of
the form (1 z 1) , where L is large. The variance of the quantizer input is given by
( 2 12)( h 2

2 1), and is tabulated for L 1 4 in Table 4.1. We see that the variance
increases (dramatically) with the high-frequency gain of the NTF. This makes sense – the
increased gain of the NTF at means that quantization noise is amplified to a larger
degree as it goes around the loop.
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Order (L) NTF Gain at h 2
2 1

1 (1 z 1) 2 1

2 (1 z 1)2 4 5

3 (1 z 1)3 8 19

4 (1 z 1)4 16 69

Table 4.1 Gain at and variance of shaped noise ( 2) at the quantizer input for modulators
with NTFs of the form (1 z 1) .

As u (which we assume to be dc) is slowly increased, there comes a point when the
quantizer begins to saturate – infrequently at first, but more and more often as u continues to
increase. When the quantizer saturates, the effective gain for u and the shaped quantization
noise both fall, and the variance of the fitting error (between and ) increases beyond

2 12 1 3 What happens to the loop? To build intuition, we assume that the number of
quantizer steps (M) is large.

Stated formally, the problem is the following: we wish to examine the behavior of
the modulator of Figure 4.3(a) as the dc input u is increased from zero. The quantizer is
assumed to have M steps, and saturates if its input exceeds the range [ (M 1) (M 1)].
We make the following observations.

u L0

L1

e

u L0

L1

u L0

L1

(a)

(b)

(c)

ˆ

ˆ

Figure 4.3 (a) modulator with a saturating quantizer; (b) modeling the saturating quantizer by
cascading one with an infinite range followed by a saturating unity gain block; and (c) quantization
noise modeled as a uniformly distributed white sequence e, with e 2. When u is large,
saturation introduces an additional error.
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a. The effect of saturation can be separated from the process of quantization by thinking
of the saturating quantizer as a cascade of a saturating nonlinearity following a quan-
tizer with an infinite range, as shown in Figure 4.3(b). The (fictitious) output of the
infinite-range quantizer is denoted by ˆ.

b. From the discussion in Section 2.2.1, ˆ can be thought of as e, where e is a
uniformly distributed white noise sequence with variance 2 12 1 3. The resulting
system is shown in Figure 4.3(c). The only approximation made here is the nature of
e.

The phenomenon we wish to understand can therefore be equivalently recast as fol-
lows: how does the system of Figure 4.3(c) behave as a function of u (assumed to be dc),
where e is a zero mean, uniformly distributed noise with variance 1 3?

We first consider the case when e 0. What is the allowed range of u, for which the
loop “works” (i.e., u )? For inputs that do not saturate the output, namely for u M ,
it is easy to see that u and ˆ u. The system is stable. Why? The NTF is
(1 z 1) by design, which means that the modulator has L poles at z 0.

What happens when u exceeds M (with e still being zero)? For large positive u,
saturates to M as the negative feedback loop attempts to make u and equal. Since cannot
exceed M , feedback drives to in desperation. Mathematically, at low frequencies,
L0(z) L1(z) z 1 (1 z 1) . Thus, as z 1, Y (z) (U (z) V (z)) (1 z 1) ,
indicating that (u ) is integrated L times. If saturates, (u ) is nonzero, causing
to reach . It is thus seen that the usable range u, even when e 0, is given by u M .
When e is non-zero, this range is further decreased, as explained below.

Consider the system of Figure 4.3(c) with a dc u chosen so that u M . We now
introduce the additive noise e as shown in the figure. e “goes around” the loop, and if u

is small enough so that the quantizer is not overdriven, the transfer function from e to is
simply the NTF. For what range of u can saturation be avoided? Referring to Figure 4.3(c),
and using Y (z) STF(z)U (z) (NTF(z) 1)(V (z) Y (z)), we have

[n] u (h[n] [n]) ( [n] [n])

u ( [n k] [n k]) (h[k] [k]) (4.10)

For an M-step quantizer without overload, [n k] [n k] (which is the quantization
error) should be less than ( 2) 1. Thus,

max max u ( [n k] [n k] ) h[k] [k] max u

1
h[k] (4.11)

A sufficient (but not necessary) condition to avoid overload, therefore, is to limit max
to (M 1), since the quantizer will be overloaded if exceeds the range [ (M 1) (M 1)].
This is assured if [1]

u max u[n] M 2
0

h[k]

1

(4.12)
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where h 1 is called the 1-norm of h[n].

For NTF(z) (1 z 1) , h 1 2 . Thus, from (4.12), it is seen that using an L-bit
((2 1)-step) quantizer results in u max 1! If, however, an (L 1)-bit quantizer is used,
we would have u max 2 1, indicating that the usable range without overloading the

quantizer is about half the quantizer range.

Extensive simulations performed for dc, sinusoid, and noise input signals [2] showed
that for L 5 and M 25, the condition (4.12) is a very tight one. Thus, signal levels
only slightly higher than the value given by (4.12) could cause instability. This indicates
the practical value of this condition.

For small M , however, the condition (4.12) is overly restrictive. For example, our
friend MOD2 is known to be stable with binary quantization and dc inputs u 0 9.
However, for MOD2, h 1 4, and thus (4.12) yields u max 3 4 1, meaning (4.12)
cannot guarantee stable operation of MOD2 for any input. The problem with (4.12) is that
it requires the quantizer to never be overloaded, whereas in practice a modulator can work
properly even if the quantizer is occasionally overloaded.

To better understand this, we begin by recognizing that Figure 4.3(c) is a nonlinear
system, excited by a dc input u and noise e. We then use a tool familiar to analog designers
– small signal analysis. u is assumed to set the quiescent operating point of the system,
while e is the incremental input.

Quiescent

Increment

M u

u L0

L1

[n] uu

0 L0

L1

[n]
ˆ

e

k

(a)

(b)

u

(c)
ˆ

e

M u

Figure 4.4 (a) u sets the quiescent operating point. (b) e is the incremental input. The effective
gain (k) of the saturating element depends on the nature of e, as well as the operating point u. (c)
Linearization of the saturating element around its operating point.

Since u is dc, and satisfies u M , the input and output of the nonlinear element are
both u. The quiescent output is [n] u, as shown in Figure 4.4(a). In the incremental
model, shown in Figure 4.4(b), u is set to zero (this is the “bias”), and the saturating
nonlinearity is replaced by a gain k. The input and output of the saturating nonlinearity
are denoted by ˆ and [n], respectively. To determine k, the nonlinear element must be
linearized around its operating point u. Figure 4.4(c) shows the shifted characteristic that
must be used for this purpose. How do we determine k? As discussed in Section 2.2.1, it
should be chosen to make the output of the nonlinearity the best linear approximation of



SIGNAL-DEPENDENT STABILITY OF DELTA-SIGMA MODULATORS 89

ˆ , namely k ˆ ˆ ˆ . The fitting error associated with this process is denoted by
e .

When the modulator saturates, k becomes smaller than unity. This makes intuitive
sense: with saturation is smaller than what it would have been otherwise. The transfer
function from e to is seen to be

NTF (z)
1

1 kL1(z)
NTF(z)

k (1 k)NTF(z)
(4.13)

In our example, NTF(z) (1 z 1)3. As k changes, the poles are the roots of the charac-
teristic polynomial (1 k)(z 1)3 kz3 Figure 4.5 shows the loci of the roots as k falls

k 1 k 0

k 0 5

z-plane

z 1

Figure 4.5 Root locus plot for a third-order modulator with NTF (1 z 1)3, as k falls from
one to zero. The system becomes unstable for k 0 5.

from one to zero. Without saturation, k 1, and the system has three poles at z 0.
When k 0, they must be at z 1. As the gain reduces to k 0 5, the system becomes
unstable. This is hardly surprising, since most high-order negative-feedback systems are
only conditionally stable.

The linear model’s behavior gives insights into what can be expected of the modulator
as u increases. When u is sufficiently close to M , so that the quantizer saturates, the
effective gain for the shaped noise decreases. This causes the poles of the linearized system
(Figure 4.4b) to move toward the unit circle. Further, e is no longer zero. As u is
further increased, both these effects are accentuated – k falls further, and the variance of
e increases even more. Both of these increase the excursions of ˆ , saturating the loop
further (causing k to reduce) until the system becomes unstable, in the sense that ˆ and
other states in the loop filter become infinite. Now, the loop filter’s output can become
infinite only if u does not equal , indicating that noise-shaping is lost. The summary of
the discussion above is the following:

a. A very loose bound on u is the maximum quantizer output M , since the quantizer
output can never balance the input in this case.

b. The range of u for stable modulator operation, assuming an M-step quantizer, is at
most M 2 h 1. For u in this range, the quantizer does not saturate. However, this
is a very restrictive limit.



90 HIGH-ORDER DELTA-SIGMA MODULATORS

c. The modulator remains stable even when u is increased beyond this limit, by letting
the quantizer saturate occasionally. The amount by which u can exceed M 2 h 1
depends on M and the NTF (through h 1).

It is thus apparent that signal-dependent stability should be expected. The largest input
for stable operation, normalized to the quantizer’s full scale output, is called the maximum
stable amplitude (MSA) of a modulator, and is defined as

MSA
max u

M
(4.14)

The “root cause” for instability is saturation, and not the process of quantization: using
an infinite-level quantizer would not destabilize the modulator, in the sense that the state
variables become unduly large.

As discussed earlier, the MSA depends on the variance of the shaped noise exciting
the quantizer, which in turn is dependent on the maximum gain of the NTF. Thus, for a

loop with an NTF of the form (1 z 1) and an M-step quantizer, the MSA should
reduce as L increases. While we discussed dc inputs in this section, the MSA should also
be expected to depend on input frequency; we saw a similar effect in connection with a
second-order modulator in Section 3.3.

In concluding this section, it should be reiterated that while there are impressive re-
search results available on the stability of high-order delta-sigma modulators, extensive
behavioral simulations are still advisable before implementing them. The lower the reso-
lution of the quantizer used, the more suspicious the designer should be about unforeseen
instability!

4.1.1 Estimating Maximum Stable Amplitude

How does one estimate the maximum stable amplitude of a modulator? Simulation
of the difference equations describing the modulator is the best approach. One simulation
approach is the following. u is an in-band sine wave, whose amplitude is stepped. For
each amplitude, the in-band SQNR is computed. When the amplitude exceeds the MSA,
the magnitude of the quantizer input approaches infinity. Consequently, noise-shaping is
lost, and the SQNR degrades dramatically. A disadvantage of the sinewave method is that
multiple long simulations (one for each amplitude) are necessary to estimate the MSA.

An alternative technique [3] is to excite the modulator with a ramp that slowly varies
from 0 to full scale, say, over a million samples, as shown in Figure 4.6(a). The magnitude
of the quantizer input is monitored. When u exceeds the MSA, the modulator becomes
unstable, and approaches infinity. The value of u when this happens is the MSA.

Figure 4.6(b) shows a plot of 20 log as a function of u for a third-order modulator
with NTF(z) (1 z 1)3, and a 9-level quantizer. From this figure, it is apparent that the
MSA is about 4 dBFS. Simulations show that this method yields results that are close to
what one gets with the sine-wave method, while being quicker. We also note that the MSA
(at least for slow inputs) is much higher than what the 1 8( 18 dBFS) value obtained
from (4.12).
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Figure 4.6 (a) Estimating MSA by exciting the modulator with a slow ramp. (b) 20 log for
a third-order loop with NTF(z) (1 z 1)3, and a 9-level quantizer.
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4.2 Improving MSA in High-Order Delta-Sigma Converters

In the previous section, we saw that loops with NTFs of the form (1 z 1) become
unstable at relatively small fractions of the modulator’s full scale. This happens since the
large gain (2 ) of the NTFs at high frequencies greatly amplifies quantization noise as it
circulates around the loop. As a consequence, the quantizer is overloaded even for small
inputs, reducing its effective gain and thereby resulting in instability. How can we improve
the input stable range, while still maintaining the order of noise-shaping?

Consider the magnitude response of the NTF (1 z 1)3, which has too much gain at
high frequencies. This restricts the input range of the modulator, as discussed at length in
the previous section. What we would like to do is to improve the MSA, while retaining
the 3 noise-shaping at low frequencies. The MSA can only be improved by preventing
quantizer overload, which has to be accomplished by reducing the NTF’s high-frequency
gain. This can be conceptually achieved by multiplying the NTF by a lowpass transfer
function G (whose gain at dc is much larger than the gain at ), as shown in Figure 4.7.
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Figure 4.7 Magnitude responses of (1 z 1)3 and the general shape of a lowpass characteristic
G. G NTF has a lower gain at , when compared to NTF .

What are the pole locations of such a lowpass filter? To get intuition about this, let us
recall a graphical method of finding the magnitude response of a transfer function

H (z)
(z z1)

(z p1)(z p2)
(4.15)

at a complex frequency z, as shown in Figure 4.8. It is straightforward to see that H (z) can
be determined by drawing vectors r1 r2 and r3 to z from p1 p2 and z1, respectively, and
using

H (z)
r3

r1r2
(4.16)

Getting back to our problem, we assume that G(z) is a second-order lowpass filter of the
form 1 (1 p1z 1)(1 p1z 1) . The modified NTF is, therefore, (1 z 1)3G(z). The
poles of G(z) are located at p1 and p1. Why does the particular form for G(z) make sense?
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Figure 4.8 Geometrical interpretation of H (z) for a transfer function of the form in (4.15).

It is needed to ensure that the modified NTF is physically realizable (which demands that
(1 z 1)3G(z) evaluate to one as z ).

Since we need the gain of G(z) to be higher at z 1 compared to z 1, it follows
that p1 (and p1) should be closer to z 1 when compared to z 1, as shown in Fig-
ure 4.9(a). Thanks to the lowpass filter, the gain of the modified NTF at has now
reduced – from 8 to 8(1 r )2. A higher order G(z) can be used, in principle, to better

z-plane
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Figure 4.9 (a) Pole-zero map of (1 z 1)3G(z). For the gain at to be smaller than unity, p1
and p1 must be closer to z 1 than z 1. (b) The lowpass filter can be realized without increasing
order by moving the poles of the NTF to suitable positions in the z-plane.

shape the NTF.

What consequence does G(z) have on the in-band performance? Since the poles
p1 p1 are close to z 1, it follows that G(1) (1 r0 )2 1. Further, while the order
of noise-shaping is preserved, the in-band NTF has increased from 3 to k1

3, where
k1 (1 r0 )2 1. Thus, while the stable range has increased (due to a reduction of the
NTFs high-frequency gain), it is accompanied by an increased in-band noise.

While the idea of multiplying an NTF by an auxiliary lowpass transfer function does
enhance the stable input range, it carries with it the disadvantage of increasing the order
of the modulator. This is easily remedied as described below. Rather than introduce new
poles (p1 and p1 in our example) to realize the lowpass filter as we have done, one could
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move the three existing poles of the NTF (at z 0) to appropriate locations in z-plane, as
shown in Figure 4.9(b). In other words, the NTF is chosen to be of the form

NTF(z)
(1 z 1)

D(z)
(4.17)

where D(z) is such, that the NTF’s poles are moved away from z 0 to appropriate
locations in the z-plane (close to z 1). The transfer function of the lowpass filter is,
therefore, 1 D(z), where the roots of D(z) are chosen to reduce out-of-band gain, just
like G(z) earlier. The “no delay-free loop” condition dictates that D(z) is of the form
D(z) (1 z 1p ).

As discussed earlier in this section, the roots of D(z) should be closer to z 1
compared to z 1 so that D(e ) 1. As a result, in-band noise-shaping is marginally
degraded (as illustrated in Figure 4.10), but the result is an increased stable input range.
The improvement in MSA depends, of course, on the actual pole positions chosen for the
NTF. A variety of possibilities exist – we will explore some in the section to follow.
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Figure 4.10 The lowpass filter reduces the NTF’s gain at high frequencies at the expense of an
increase in in-band quantization noise.

Let us now summarize some key points with regard to high-order loops.

a. Overloading the quantizer destabilizes the loop.

b. Since the quantizer input equals the modulator input plus shaped noise, it follows that
the stable input range of the modulator must be smaller than the quantizer range.

c. More shaped noise in a stable modulator means a higher likelihood of instability and
a reduced stable input range.

d. An NTF with more shaped noise (higher out-of-band gain) will also have less in-band
noise. From the observations above, we see that an aggressive NTF (i.e., one that
attempts to attenuate in-band noise to a larger degree) will have a smaller stable input
range.

At this juncture, we would like to draw the attention of the reader to a recurring
thread in all our discussions. Ponder this – when we compare MOD1 and MOD2, the
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in-band performance of the latter was much better ( 2 versus ). However, the gain at
was “worse” (4 versus 2). This trend continued as we conceived of high-order

modulators with NTFs of the form (1 z 1) earlier in this chapter. In this section,
when we tamed the high-frequency gain of a high-order NTF by moving pole positions, the
in-band performance degraded! It seems as if the in-band and out-of-band performances
of an NTF are always going in opposite directions: is this a coincidence with the NTFs we
have been considering, or is there something fundamental lurking here? It turns out to be
the latter, and we discuss this in Section 4.5.

Having gained intuition about the stability and NTF trade-offs associated with a high-
order modulator, we now proceed to the topic of systematically choosing a noise transfer
function. In other words, we attempt to answer the question: how does one go about
determining an NTF that achieves a desired in-band SQNR?

4.3 Systematic NTF Design

As we have seen earlier, an NTF is a highpass transfer function that must be designed so as
to achieve the desired in-band SQNR. In a typical application, the signal bandwidth, sam-
pling rate (usually constrained by the system) and the desired in-band SQNR are known.
Increasing the number of levels in the quantizer has practical implementation difficulties,
and designers usually restrict the resolution of the quantizer to 16 levels. How do we go
about the design? This is best illustrated by an example. Let us aim to design a third-order
NTF with OSR 64 that achieves better than 115 dB peak SQNR with a 16-level quantizer.
We proceed in the following stepwise fashion [4].

a. We pick a prototype highpass filter family - one can, here, borrow from the rich liter-
ature on IIR digital filters. Commonly used filters belong to the Butterworth, Cheby-
shev, inverse Chebyshev, and elliptic families. A practical advantage to using these
“readymade” highpass filters, as opposed to inventing one’s own, is that coefficients
for these approximations are readily obtained from MATLAB. In this example, we
(arbitrarily) pick a Butterworth filter with a 3-dB corner of 8. Recall that a Butter-
worth design is fully specified by its corner frequency.

b. We obtain the transfer function from MATLAB. The relevant code fragment and the
output are the following:

[b,a]=butter(3,1/8,’high’)

H (z)
0 6735 2 0204z 1 2 0204z 2 0 6735z 3

1 2 2192z 1 1 7151z 2 0 4535z 3

As per standard practice, the filter coefficients are scaled so that the passband gain of
the high-pass filter is 1. A question to ponder is the following. An NTF is a highpass
filter, but can any highpass transfer function be an NTF? In other words, how do we
know that the H (z) above is a valid NTF? We have addressed this question before –
any physically realizable NTF, when evaluated at z must reduce to unity. This is
the frequency domain constraint imposed by the “no delay-free loop” rule.

In our example above, H (z ) 0 6735, indicating that it is not physically im-
plementable. It should therefore be scaled by 1 0 6735. The resulting NTF is given
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by

NTF(z)
(1 3z 1 3z 2 z 3)

1 2 2192z 1 1 7151z 2 0 4535z 3 (4.18)

The (constant) gain of the NTF at high frequencies is called the out-of-band gain
(OBG). In our example, the OBG = 1 0 6735 1 48 Figure 4.11 shows the magni-
tude responses of H (z) and NTF(z).

How does the in-band gain of the NTF in (4.18) compare with that of NTF(z)
(1 z 1)3? As z 1, the denominator of (4.18) evaluates to 0.0424: the in-band
gain of our NTF is 3 0 0424, which is about 24 times higher than that of (1 z 1)3.
This is not surprising, as the OBG is much smaller.
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Figure 4.11 Magnitude responses of H and NTF. The OBG of the NTF is 1.48, and the resulting
SQNR is about 102 dB.

c. Next, we find the transfer function of a loop filter using 1 (1 L1(z)) NTF(z). The
result is

L1(z)
0 7808z 1 1 285z 2 0 5465z 3

1 3z 1 3z 2 z 3 (4.19)

One way of realizing the modulator with the desired NTF is to use the special
case of Figure 4.1 where L0 L1 L, as shown in Figure 4.12.

d. We then simulate the equations describing the modulator, determine the MSA, and
thereby the peak SQNR. In our example, we obtain the MSA to be about 85% of full
scale, and a peak SQNR of 102 dB, a good 13 dB short of our design goal.

e. Since the SQNR is not adequate, we conclude that the highpass filter is not doing a
sufficiently good job of attenuating low frequencies. The cutoff frequency of the But-
terworth highpass filter should, therefore, be increased. In our example, we increase
the 3-dB corner of the filter from 8 to 4. Going through step (b) above, we see
that the OBG of the resulting NTF will be higher than that we had earlier. Since the
OBG increases, the MSA should reduce.
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L(z)u

Figure 4.12 A modulator structure where L L1 L.

f. After completing steps (c) and (d), we find that the OBG and MSA are 2.25 and 80%
of full-scale, respectively, and that the peak SQNR is about 116 dB. We have thereby
achieved our goal.

4.4 Noise Transfer Functions with Optimally Spread Zeros

In the preceding sections, we dealt with NTFs of the form (1 z 1) D(z), where all the
zeros of the NTF occur at z 1. In the signal band, NTF 2 k1

2 , where, as seen
earlier, k1 1.

In-band noise =
2

12
OSR

0
k1

2 d (4.20)
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Figure 4.13 (a) Squared magnitudes of second-order NTFs with both zeros at z 1 and with
optimized zeros, and (b) the corresponding zero locations in the z-plane.

Figure 4.13(a) shows the squared magnitude of a second-order NTF in the signal band.
It is apparent that most of the contribution to the in-band noise is from frequencies around
the band edge. We can do better by making the NTF zeros complex (of the form e ),
as shown in Figure 4.13. The corresponding squared magnitude response is now given by
k1( 2 2)2, as seen in Figure 4.13(a). But what should one use for best results? The
optimal is the one that minimizes the integral

2

12
OSR

0
k1( 2 2)2 d (4.21)

Straightforward analysis shows that the optimum corresponds to

OSR
1
3

(4.22)
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The in-band noise is lower by 3.5 dB.

From the discussion above, it is to be expected that even greater benefits can be ob-
tained by optimizing the location of the zeros of higher-order NTFs. The principle of
optimization, however, remains the same: the normalized noise power, given by the inte-
gral of the squared magnitude of the NTF over the signal band, is minimized with respect
to the values of all its zeros. The optimal zeros are found by equating the partial derivatives
of the integral to zero.

The resulting values for the zeros (normalized to the signal band limit) are given, for
NTFs with orders from 1 to 8, in Table 4.2. Note that the optimization process giving these
zeros assumed that the quantization noise is white, and that the poles of the NTF have no
significant effect on the in-band noise. If these conditions do not hold, or if the noise at
different frequencies should be weighted differently as is the case, e.g., for A-weighting of
audio signals, then the optimization may still be performed, by incorporating these factors
into the optimization process in the form of a weight factor under the integral.

Order Zero Locations SQNR

Relative to Band Edge Improvement (dB)

1 0 0

2 1 3 0 577 3.5

3 0, 3 5 0 775 8

4 0 340 0 861 13

5 0, 0 539, 0 906 18

6 0 23862 0 66121 0 93247 23

7 0 0 40585 0 74153 0 94911 28

8 0, 0 18343 0 52553 0 79667 0 96029 34

Table 4.2 Zero placement for minimum in-band noise.

4.5 Fundamental Aspects of Noise Transfer Functions

So far in this book, we have been exposed to NTFs of the form (1 z 1) D(z), as well
as those with optimized zeros. We saw, repeatedly, that good in-band performance was
accompanied by high out-of-band gain. Was this incidental, or is there something more
fundamental lurking here? It turns out to be latter, as the alert reader would suspect. In this
section, we examine this correlation in more detail.

4.5.1 The Bode Sensitivity Integral

Before we discuss NTFs of modulators, let us review the following facts from control
theory. Consider the discrete-time feedback system shown in Figure 4.14, with input x and
output . e is a disturbance injected at the output of the loop filter L.
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E(z)

X (z) V (z)

Figure 4.14 Sensitivity of a feedback loop is defined as the transfer function from the disturbance
e to the output .

V (z)
L(z)

1 L(z)
X (z)

1
1 L(z)

E(z) (4.23)

If L(z) , V (z) X (z) and the loop rejects E(z). In other words, the loop is
insensitive to E(z). Since L(z) cannot be at all frequencies, the loop can reject the
disturbance e effectively only at frequencies where the loop gain is high. The sensitivity

function, defined as

S(e )
1

1 L(e )
(4.24)

quantifies how effectively the loop rejects e. In a loop, the sensitivity is the same as the
NTF. From our discussions earlier, the first sample of the impulse response corresponding
to NTF(z) has to be unity. In the frequency domain, this is equivalent to NTF( ) 1.
Further, since the numerator and denominator polynomials of the NTF can be expressed as
a product of first- and second-order factors, NTF(z) can be written as

NTF(z)
(1 b1z 1)(1 b2z 1 b3z 2)
(1 a1z 1)(1 a2z 1 a3z 3)

(4.25)

For a stable modulator, the poles must lie inside the unit circle. The zeros of the NTF lie
on the unit circle. It is easily shown (by integrating log [z (z a1)] on the unit circle) that
if a1 1,

0
log( 1 a1e ) d 0 (4.26)

Equation (4.26) tells us that the area above zero in the log magnitude plot of (1 a1e )
is equal to the area below zero, as shown in Figure 4.15. Having accepted (4.26), it is
straightforward to see that

0
log( 1 a2e a3e 2 ) d 0 (4.27)

if the roots of 1 a2z 1 a3z 2 lie within (or on) the unit circle.

The NTF can be expanded as a ratio of first- and second-order polynomials as shown
in (4.25), and the integral of the log magnitude of the NTF is seen to be

0
log NTF(e ) d

0
log

(1 b1e )(1 b2e b3e 2 )
(1 a1e )(1 a2e a3e 3 )

d 0

(4.28)
Since the NTF in a loop is the same as the sensitivity of the feedback loop, the equation
above is equivalent to
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Figure 4.15 For a1 1, the area above zero (C1) and that below zero (C2) are equal.

0
log( S(e ) )d 0 (4.29)

This integral relationship, well known in control theory, is called the Bode sensitivity

integral. This is a direct consequence of the infeasibility of physically realizing a delay-
free feedback loop [5].

Thus, in a modulator, good in-band performance can only be obtained at the ex-
pense of poor out-of-band performance. Any attempt to reduce the in-band gain leads to
an increased gain at high frequencies.

The Bode sensitivity integral gives us a different kind of insight into why using a
high-order NTF is more effective in reducing in-band quantization noise. Figure 4.16
shows the log magnitudes of two NTFs with the same out-of-band gain, but with different
orders. The signal bandwidth is marked with the dashed line. A higher order NTF enables
a narrower transition band. This increases the area above the 0 dB line, which means that
more “negative area” is available. Further, since the transition band is narrower, it follows
that less of the negative area is “wasted” in this band. This allows the in-band gain to be
lower, resulting in better in-band performance.

4.6 High-Order Single-Bit Delta-Sigma Data Converters

So far in this book, we have seen that combining oversampling with negative feedback can
dramatically enhance the effective resolution of the coarse quantizer embedded in the loop.
Several possible approaches can yield the desired SQNR in the signal bandwidth. One can
reduce the number of quantizer levels, while increasing the sampling rate (equivalent to
operating at a higher OSR), or by increasing the order of noise-shaping. The advantage of
using a quantizer with fewer levels is the reduction in the hardware required to realize the
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Figure 4.16 High order NTFs have a larger “positive area” and a sharper transition band.

modulator. The simplest quantizer that can be used is one that has two levels, also called
the 1-bit quantizer.

Apart from being very easy to implement, a single-bit quantizer is inherently linear in
the sense discussed in Section 2.4.1, where errors in the threshold or levels cause (benign)
offset and gain errors in the loop. Since the quantizer’s output is simply the sign of its
input, it follows that the loop filter’s output can be scaled without affecting the modulator’s
output, as shown in Fig. 4.17. It turns out that this can potentially simplify the design of
operational amplifiers used in the integrators of the loop filter.

L0

k

L1

u

Figure 4.17 The output sequence of a single-bit modulator is not affected by scaling the loop filter
output by a positive constant k.

What should we expect from past experience based on the additive quantization noise
model? When compared with a multi-level design, we should expect to use a larger OSR
to achieve the same in band SQNR, since the error added by a single-bit quantizer is much
higher. For the same reason, the MSA should reduce in the two-level case, when compared
to a multibit loop with the same NTF. Further, the error waveform that needs to be pro-
cessed by the loop filter is much larger in magnitude. This means that, to achieve the same
level of overall performance, the loop filter of such a modulator has to be lot more linear
than its counterpart in a multi-bit design.

The conclusions above regarding single-bit modulators were based on the intuition
we developed from our study of multi-bit modulation. While these are largely valid,
one should not be surprised if a single-bit modulator behaves in unexpected ways: after
all, a 1-bit quantizer is always saturated, which means that the additive white quantization
noise model is particularly questionable.
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In our discussion on the stability of a multibit modulator, we saw that the NTF is all
one needs to know to understand its stability. In the case of a binary (1-bit) modulator, an
important question is “What NTF properties are necessary and sufficient for stable opera-
tion?” Unfortunately, a simple and exact answer to this question is not known. The proven
results are generally either too restrictive (too conservative), or apply only for specific mod-
ulators with constant inputs. A widely-used approximate criterion is the (modified) Lee’s
rule [6, 7].

A 1-bit modulator is likely to be stable if max( NTF(ej ) ) 1 5.

The quantity max ( NTF ) is the maximum gain of the NTF over all frequencies, also
known as the infinity-norm of NTF, for which the mathematical notation is NTF . In the
original statement of the condition, the limit on NTF was given as 2, but as experience
with higher order modulators was gained, the rule of thumb was revised to use a limit of
1.5. For moderate-order modulators (order 3 or 4), slightly higher values may be tolerable,
while for very high-order modulators (7 or more) a more conservative NTF 1 4 may
be more appropriate.

Note that this criterion is neither necessary (as we have seen in the stable MOD2 with
NTF(z) (1 z 1)2, where NTF 4 was allowed) nor sufficient (the criterion says
nothing about a limit on the input signal). Nevertheless, due to its simplicity, it is of some
use. Although Lee’s rule is a helpful rule of thumb for predicting a priori instabilities in
single-bit modulators, it has no solid theoretical foundations, and needs to be confirmed by
extensive simulations.

Note that the maximum of NTF(e ) usually occurs at , since this point is
farthest from the zeros (which are clustered around z 1 ) and closest to the poles. An
exception may occur if the NTF(z) has high-Q poles, in which case the peak value may
occur near the dominant (highest Q) pole.
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Figure 4.18 Empirical SQNR limit for 1-bit modulators of order N .

Figures 4.18 through 4.20 provide some additional design information [8]. These
curves show the achievable peak signal-to-quantization-noise ratio (SQNR) for modula-
tors of orders N 1 8 employing optimal zero placement, with 1- to 3-bit internal
quantization. The curves include the effects of the reduction of the input u necessary to
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Figure 4.19 Empirical SQNR limit for modulators with 2-bit quantizers of order N .
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Figure 4.20 Empirical SQNR limit for modulators with 3-bit quantizers of order N .
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satisfy the stability conditions. Hence, they accurately predict the actual performance of
the real (nonlinear as opposed to linearized) modulator.

4.7 Loop Filter Topologies for Discrete-Time Delta-Sigma Converters

Having understood various trade-offs regarding the choice of the NTF, it is time to im-
plement the loop filters L0(z) and L1(z) in Figure 4.2. In this section, some basic con-
figurations will be described: while some of these can be considered as straightforward
generalizations of the second-order modulator MOD2 discussed in Chapter 3, others are
different. Since a desired NTF may be realized in many ways, this begs the question: which
topology should one choose, and why? We attempt to throw light on this below [4, 9, 10].

4.7.1 Loop Filters with Distributed Feedback: The CIFB and CRFB Families

a3

b1

u
x2

e

a2

x1

a1

1

1 1
1

1 1
1

1 1

Figure 4.21 A third-order NTF realized as a cascade of integrators with feedback (CIFB) structure.
All NTF zeros are at z 1.

Figure 4.21 shows a third-order modulator derived along the same lines as that
in Figure 4.1. The loop-filter consists of a cascade of three delaying integrators, with the
quantizer output fed back into each of the integrators with different weight factors. This is
the CIFB structure, and it is easily extended to higher orders. It is straightforward to see
that

L0(z)
b1z 3

(1 z 1)3 L1(z)
a1z 3

(1 z 1)3
a2z 2

(1 z 1)2
a3z 1

(1 z 1)
(4.30)

L0 and L1 have three poles at dc (z 1). The NTF and STF are given by

NTF(z)
(1 z 1)3

(1 z 1)3 a3z 1(1 z 1)2 a2z 2(1 z 1) a1z 3 (4.31)

STF(z)
b1z 3

(1 z 1)3 a3z 1(1 z 1)2 a2z 2(1 z 1) a1z 3 (4.32)

The denominators of both transfer functions are identical, since they are associated
with the same system. The NTF satisfies the condition NTF(z ) 1, necessary for
physical realizability. It has three zeros at dc, corresponding to the three dc poles of L1(z).
a1 a3 are chosen to achieve the desired poles (as dictated by the NTF).

The dc gain of the STF, given by STF(1), is (b1 a1). While this is apparent from the
equations above, the gain can be inferred intuitively from Figure 4.21 as follows. In any
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stable negative feedback loop, the average input of any integrator should be zero. Why? If
this was not true, the nonzero dc would keep accumulating, causing the integrator’s output
to reach infinity, thereby contradicting our assumption of a stable system. Applying this
principle to the first integrator of Figure 4.21, we see that at dc, b1u a1 , resulting in a
dc gain of (b1 a1).

Provided that b1 and a1 are chosen to be equal so that the dc gain of the STF is unity,
and provided that the input u is slowly varying, Y (z) U (z) (NTF(z) 1)E(z). ,
as we have seen before, consists of shaped quantization noise riding on the input. When
the amplitude of u is equal to the MSA, the peak-to-peak swing of is approximately the
no-overload range of the quantizer. Under these circumstances, what are the swings at the
first and second integrator outputs (x1 and x2)?

Example: Third-order maximally-flat NTF with OBG = 2.25

The NTF (found using the techniques of Section 4.3) is given by

NTF
(1 z 1)3

1 1 467z 1 0 8917z 2 0 1967z 3

Equating coefficients of like powers of z 1 of the denominator of the NTF above
to those in the general form of equation (4.31), we obtain a1 0 228 a2 0 957
and a3 1 533

How does the in-band RMS quantization noise of this NTF compare with that
obtained with an NTF of (1 z 1)3? As seen from Figure 4.21, a1 represents
the gain of the “triple integral” path of L1(z) – that is, it is the coefficient of
z 3 (1 z 1)3. At low frequencies, therefore, the NTF, which is 1 (1 L1(z)),
is approximately 1 L1(e ) 3 a1. It is thus seen that the magnitude of the
NTF in the signal band is mostly dictated by the loop filter path with the highest
order of integration. In our example, reducing the OBG to 2.25 has resulted in an
NTF whose low-frequency gain (and in-band RMS noise) is larger by a factor of
1 a1 4 4.

One might wonder why the second- and first-order paths of L1(z) are necessary
at all, if the in-band NTF only depends on a1. These paths are needed to stabilize
the negative-feedback loop. We also see that a3 is larger than a2, and significantly
larger than a1. Why does this make intuitive sense? The loop gain around every
stable negative-feedback loop consists of a “quick and dirty” fast path, which is
necessary to give the loop a good sense of gross errors, and make course cor-
rections. The “precision path”, which is needed to ensure steady state accuracy
(which in the context translates to the low frequency gain of the NTF), should
have high dc gain and is achieved by cascading integrators. Due to the cascade,
the high-order path is necessarily slow. Without a fast path that provides a suffi-
cient amount of quick feedback, the high gain but slow path will cause instability.
This means that the first-order path should have a sufficiently large gain. This is
why a large a3 (which is the gain of the first-order path) makes sense.

To determine this, we use superposition. If only u were present (with e 0), u. x1
and x2 should be a2u and a3u, respectively. Why? Recall that the dc input to any integrator
in a stable negative-feedback system must be zero. Extending this argument, the low-
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frequency component of any integrator’s input should be very small. Thus, x1 a2 a2u

and x2 a3 a3u, since u in the absence of e. With only e present, is e shaped to
third order. x1 being the accumulated version of , is second-order shaped. x2 is comprised
of first- and second-order shaped noise. By a similar token, x3( ) consists of all orders
of shaped noise. In summary,

x1 a2u second-order shaped noise

x2 a3u first- and second-order shaped noise

x3 u all orders of shaped noise.

Since u is a sinusoid with the maximum stable amplitude, the peak-to-peak swing of
is virtually the no-overload range of the quantizer. In practice, the latter is chosen to be

the largest range that can “fit” in the supply voltage used to design the modulator. This
choice makes sense, as it maximizes the step size of the ADC and simplifies its design.
The MSA is typically a large fraction (about 85%) of the quantizer range. This means that
implementing the modulator as in Figure 4.21 can potentially cause the range of x1
and x2 to exceed that of the quantizer (which we assumed to be the maximum possible in
the given supply voltage). In our example modulator above, with a3 1 53 and a2 0 95,
and with a sinusoidal input having amplitude of 85% of full-scale, simulations show that
x2 will swing much more than x3 does (x2 max 21 and x3 max 15).
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C1

C(a)

2
1

2

C2

1
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(b)

1

Figure 4.22 (a) A summing, delaying switched-capacitor integrator; (b) equivalent macro model.

Large internal swings are problematic in practice, as they cause the opamps realizing
the integrators to saturate, which severely degrades performance, and may even destabilize
the modulator. To prevent premature saturation of internal states, they must be scaled

without affecting the transfer functions L0 and L1 of the loop filter. This process is called
dynamic-range scaling. We describe this in more detail below, with special reference to
discrete-time integrators realized using switched capacitors.
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Figure 4.22(a) shows a single-ended delaying switched-capacitor integrator that per-
forms weighted addition of inputs 1 and 2. The transfer functions of the integrator from

1 and 2 to are (C1 C )z 1 (1 z 1) and (C2 C )z 1 (1 z 1), respectively. The inte-
grator’s macro-model is shown in Figure 4.22(b). Thus, the output can be scaled by varying
C , or C1 and C2. Analysis (see Chapter 7) shows that the input paths are corrupted by
noise whose mean square value is inversely proportional to C1 and C2, respectively.
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(a)

Figure 4.23 (a) Portion of a signal flow graph; (b) x1 is scaled by , but transfer functions from
to x2 and x3 remain unchanged.

Consider the portion of the modulator of Figure 4.23(a) shown in gray. If the dc gain
of the modulator’s STF is chosen to be unity, b1 a1. The input integrator, then, processes
(u ), which we denote by . The gain a1( b1) can subsequently be pushed through
the summer. The macro-model of the resulting circuit built using switched-capacitor inte-
grators is shown in Figure 4.23(b). 2 represents the input-referred mean square noise of
the first integrator. C1 C implements b1. The second integrator processes the weighted
sum of x1 and . The input capacitors of this integrator are denoted by C2 and C3, and the
integrating capacitor is denoted by C . The input referred thermal noise of the two input
paths are represented by 2

1 and 2
2.

Suppose that we wish to scale x1 by a factor , while at the same time ensure that
the transfer functions from and to x2 do not change. Reducing the feedback capacitor
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of the first integrator C by a factor scales x1 by . To keep x2 the same, the input
capacitor C2 of the subsequent block (that senses x1) should be reduced by as shown in
Figure 4.23(c).

Scaling x1 has interesting consequences for noise at x2. Since C2 has reduced, 2
1

increases by , but the transfer function from the noise source to x2 has reduced by the
same factor. Thus, the contribution of 1 to the mean square noise at has reduced by .
Scaling x1 by 1, therefore, has the desirable consequence of reducing noise, as well
as the total capacitance in the network. If is too large, however, the first integrator will
saturate – something that should be avoided. It is thus seen that should be chosen to be as
large as possible without causing saturation. To achieve a low noise and an area-efficient
design, this exercise should be applied to all opamp outputs. As mentioned earlier, this
procedure is called dynamic-range scaling, and it is an essential part of the design process.

Summing SC Integrator
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1 1

â3
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e

x1 1

1 1
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1

1 1u
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b1

u x2

e

a2

x1

a1

1

1 1
1

1 1
1

1 1

(a)
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Figure 4.24 (a) Prototype CIFB modulator and (b) incorporating dynamic-range scaling. The dc
gain of the STF is constrained to be unity.

Figures 4.24(a) and (b) show the structure of the CIFB modulator of Figure 4.21,
without and with dynamic-range scaling. In the latter, scaling is achieved through coeffi-
cients c1 and c2. The STF at dc is unity. Figure 4.25(a) shows the integrator outputs of
the CIFB modulator of Figure 4.24(a). The quantizer is assumed to have 16 levels (with
step-size of 2). The input is a sinusoid with an amplitude 80% of full-scale. As we deduced
earlier, every integrator output has an input component. We see that x2 can saturate in a
practical realization. After dynamic-range scaling (see Figure 4.25(b)), where x1 and x2
were restricted to a peak magnitude of 12, there is no danger of saturation.

What is the STF of the modulator of Figure 4.24(b)? By inspection, L0(z)
â1c1c2z 3 (1 z 1)3. Thus,

STF(z)
L0(z)

1 L1(z)
â1c1c2z 3

D(z)
(4.33)

where D(z) is the denominator polynomial of the NTF. As discussed earlier in this chapter,
1 D(z) is a lowpass response, chosen so as to “tame” the high-frequency gain of (1 z 1)3.
Thus, the magnitude response of the STF must have a lowpass shape whose details are
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Figure 4.25 Integrator outputs of the CIFB modulator of Figure 4.21. (a) Before dynamic-range
scaling and (b) after dynamic-range scaling. The input is a sinusoid with an amplitude 80% of
full-scale.

dictated by the particular choice of D(z). It is important to see that once the architecture
(CIFB in this case) and NTF are frozen, there is no freedom with respect to the STF – one
has to accept whatever shape results from (4.33).

What are the problematic aspects of a CIFB design that motivate alternative methods
of realizing the loop filter? First, a CIFB loop has multiple feedback paths into the loop
filter. This means that an N th order modulator will need N feedback DACs. Another
problem with the CIFB architecture is area efficiency, particularly so when a quantizer with
many levels is used. The intuition behind this is the following. Consider the case of a dc
input u, chosen to be slightly less than the maximum stable amplitude of the modulator.
Since the number of quantizer levels is large, the peak-to-peak shaped noise is small com-
pared to u, and is neglected in this analysis. Referring to Figures 4.24(a) and (b), we see
that a3 and â3 should be equal. Since x2 has been scaled so that its peak swing is the same
as that of x3, and neglecting shaped quantization noise riding on x2, c2 should equal â3
to ensure that the dc input into the succeeding integrator is zero. Since c2 â3 a3, the
gain of the double integration path in L1 is â2â3, which should equal a2. Thus â2 a2 a3.
Reasoning along similar lines as above, c1 â2 a2 a3 and â1c1c2 a1, resulting in
â1 a1 a2 Recall that â1 has to be much smaller than unity – this is a consequence of
stabilizing the NTF, as we saw in Section 4.2. As a consequence, â1 is necessarily small.

As will be seen in Chapter 7, the input referred noise of the modulator is largely
dictated by the size of the input capacitor used in the first integrator, with a high-resolution
design demanding the use of a large input capacitor. Therefore, a small â1 necessitates
an even larger integrating capacitor, thereby greatly increasing the area occupied by the
modulator. Another undesirable consequence of the small â1 in the first integrator is that
noise and distortion added further down in the loop filter are not adequately attenuated
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when referred to the modulator’s input. Moreover, the large input components present at
the output of every integrator cause harmonic distortion in the modulator’s output due
the unavoidable nonlinearities of the integrators.

1
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e

x1 1

1 1
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1

1 1
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u

c3c2c1

b1 b2 b3 b4

x2 x3

Figure 4.26 A CIFB structure with feedforward.

Having established “states consisting of the input component” as the root cause of
the CIFB modulator’s problems, several ways of keeping the states free of the input can
be conceived. One of them is to add feedforward from u to the output of every integrator,
as shown in Figure 4.26. Since is comprised of u and shaped noise, the loop filter can
be spared the burden of having to generate u by assisting it through the feedforward path
b4, whose gain is chosen to be unity. This way, x3 is devoid of u. In a similar manner,
choosing b3 a3 and b2 a2 ensures that the input components of the signals being
injected by the feedback paths are supplied by the feedforward paths. Thus, adding feed-in
paths into the unscaled modulator of Figure 4.21 not only dramatically reduces the swings
at the outputs of the integrators but also ensures that they remain largely independent of
the amplitude of u (as long as the modulator is stable). This means that x1, x2, and x3
can be scaled by factors larger than unity by reducing the sizes of the feedback capacitors.
This reduces capacitor area and noise contributed by the second and third integrators, as
discussed earlier in this section.

Adding feedforward modifies the STF, which is given by

L0(z)
1 L1(z)

b4(1 z 1)3 b3c3z 1(1 z 1)2 b2c2c3z 2(1 z 1) b1c1c2c3z 3

D(z)
(4.34)

As expected, the numerator polynomial is altered by the feed-in paths, and causes
peaking in the STF. This can be problematic if the input consists of signals with large
out-of-band amplitudes, in the sense that the gain imparted by the STF can destabilize the

loop.
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Figure 4.27 The CRFB modulator structure. Feed-in paths and scaling coefficients are not
shown.
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The CIFB structures that we have discussed so far can realize NTF zeros only at dc.
We have already seen that a much higher SQNR can be achieved by placing these zeros
at nonzero frequencies on the unit circle. This requires L1(z) to have complex poles,
which is easily achieved by modifying the CIFB architecture, as indicated in Figure 4.27.
This loop is capable of realizing three NTF zeros, one at dc and a complex conjugate pair
on the unit circle. The first integrator contributes the dc pole to L1(z). The second and
third integrators, together with the feedback path with gain 1, form a resonator with two
complex poles which are the zeros of z2 (2 1)z 1. These poles will be on the unit
circle at frequencies 1, where 1 satisfies cos( 1) 1 ( 1 2). For the usual case
when 1 1, 1 1. This modulator configuration is called a cascade of resonators
with distributed feedback (CRFB) structure. As in the CIFB case, input feed-in paths can
be added to the outputs of all integrators. While not shown in Figure 4.27, x1, x2, and x3
will need to be scaled for dynamic range, through the coefficients c , as in Figure 4.24.

The astute reader would have noticed that the resonator loop in Figure 4.27 con-
tains a non-delaying integrator. This is necessary to ensure that the resonator poles lie on
the unit circle. For ADCs operating at high sampling rates (to achieve a large signal
bandwidth), it is advantageous to have a delay associated with every integrator, since this
reduces the speed requirements of the amplifiers used. In such situations, both integrator
blocks in the resonator have transfer functions z 1 (1 z 1). It is easy to see that the
transfer function of the resonator then becomes

R(z)
z 2

1 2z 1 (1 1)z 2 (4.35)

The poles are now outside the unit circle, at z 1 j 1. For 1 1, 1 1. The
resonator by itself is unstable, as can be inferred from its pole locations. However, local
oscillations are prevented since it is embedded in a strong negative-feedback system.

In designing the CRFB circuit, the value of 1 can immediately be determined from
1, as shown above. The rest of the parameters (a and b ) can readily be found by calcu-

lating L (z) and L1(z), first from the specified STF and NTF, and then in terms of the a ,
b , and from the circuit diagram, and matching the coefficients of like powers of z 1. A
less laborious way is to use the software tools described in Appendix B.

4.7.2 Loop Filters with Distributed Feedforward and Input Coupling: The
CIFF and CRFF Structures
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Figure 4.28 A third-order NTF realized using a cascade of integrators with feed forward (CIFF)
structure.
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The third-order NTF transfer function, realized using a CIFB structure in Figure 4.21
can also be realized by using feedforward in the loop filter, as shown in Figure 4.28. By
inspection, L1(z) is given by

L1(z) a1
z 1

1 z 1 a2
z 1

1 z 1

2

a3
z 1

1 z 1

3

(4.36)

If the STF has to be one at dc, b1 1 (so that the dc input into the first integrator is
zero). The a1 a2 a3 coefficients are determined from the desired L1(z).

As discussed in the feedforward implementation of MOD2 (Section 3.4.2), the dc
components of x1 and x2 are zero because these states connect directly to the subsequent
integrator. Since consists of u and shaped noise, the input component of must be the
contribution of x3. This in turn means an increased capacitor area. To avoid this, one can
“assist” the loop filter by feeding u to its output, as shown in Figure 4.29. This way, all
the integrators process only the shaped quantization noise, thereby resulting in reduced
harmonic distortion. It is easy to see that L0(z) 1 L1(z), which means that the STF is

1
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1 1u

e
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x1
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a3x2

x3

Figure 4.29 A low distortion CIFF structure, accomplished using input feedforward.

unity at all frequencies.

The “fast path” around the quantizer is that with the lowest order of integration. In
the CIFF case, this corresponds to the first integrator. It turns out that after dynamic-
range scaling, the first integrator’s gain is large (since it only processes shaped quantization
noise, and its output does not have a signal component). This is useful, since the noise and
distortion added by the successive stages are rendered small when referred to the input.
What is the other advantage of a CIFF implementation? Such a modulator would need
only one feedback DAC, thereby simplifying design.

An aspect of a CIFF loop filter is that the feedback path of the modulator is part of the
“fast” as well as the “precision” paths of the feedback loop. This can render the implemen-
tation of a high-speed design a challenge, especially when the loop filter is implemented in
continuous time.

As (4.36) shows, all the three poles of L1(z) lie at dc, for the structures of Figures 4.28
and 4.29. Hence, so do all zeros of the NTF. To obtain optimized zeros, resonators must be
created by internal feedback within the loop filter. The resulting modulator is illustrated in
Figure 4.30. This is called the cascade of resonators with feed forward (CRFF) structure.
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Figure 4.30 A low distortion CRFF structure. Internal feedback through 1 realizes the complex
zeros of the NTF.
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Figure 4.31 A modulator with feed-forward and multiple feedback paths.

4.7.3 Loop Filters with Feedforward and Multiple Feedback: The CIFF-B
Structure

Having understood various trade-offs associated with CIFB and CIFF loop filters, we are
now in a position to combine multiple feedback and feedforward. The aim of this exercise
is to create a topology (which we call the cascade of integrators with feedforward and
feedback, or CIFF-B) that inherits the benefits of its parents. Figure 4.31 shows a third-
order modulator that uses a CIFF-B loop filter. It uses two DACs; as opposed to one
and three for the CIFF and CIFB loops, respectively. It also has multiple feedback paths
through coefficients a1 and a3. The fast feedback around the quantizer is through a3, while
a1 controls the gains of the second- and third-order paths. The advantage of this is that the
fast and precise paths of the feedback loop are decoupled, allowing them to be optimized
for speed and precision, respectively, the same as in a CIFB loop. This is particularly
important when the loop filter is implemented in continuous-time, and we will revisit this
aspect in Chapter 8. The second-order path is realized using feedforward, through the first
and third integrators. Since x1 is the input to the second integrator, it must have a very
small input component. This means that its gain will be large after scaling the modulator
for dynamic range. This is a useful attribute, as we saw in connection with the CIFF loop
filter. Not only does this lead to a smaller value for the feedback capacitor of the first
integrator, but it also reduces the effect of noise and distortion added by subsequent stages
of the loop filter. Though x1 is largely independent of u, x2 will have an input component,
which is needed to ensure that the low-frequency input to the third integrator is small. It
is easy to see that for a dc input u, x2 consists of first-order shaped noise riding on a dc of
value a3u. Complex zeros of the NTF can be realized by adding internal feedback across
two integrators, as in the CIFF and CIFB cases.
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From the discussion in this section, it is apparent that several methods of implement-
ing the loop filter can be conceived. Every topology has its advantages and drawbacks,
reinforcing the notion that engineering is all about trade-offs, and that there is no free
lunch.

4.8 State-Space Description of Delta-Sigma Loops

Working with the loop filter description in transfer function form is convenient for analysis
and building intuition. Computer simulation of the modulator’s behavior, however, is best
done by modeling the loop filter in state-space form. This approach is described extensively
elsewhere [11], and the purpose of this section is to draw the reader’s attention to a few
aspects concerning the simulation of a modulator. The discussion that follows uses a
second-order structure for illustration.

Figure 4.32 shows MOD2, where the block diagram of each delaying integrator is
explicitly shown. The output of every delay element is a state. From the figure, it is seen

1

1 1

a1

z 1 z 1 x2x1

a2

b1 b2 b3

u

Figure 4.32 MOD2: the integrators are implemented with delays.

that the inputs to the delay elements can be related to the outputs by

x1[n 1] x1[n] b1u[n] a1 [n]
x2[n 1] x1[n] x2[n] b2u[n] a2 [n]

[n] x2[n] b3u[n]

In matrix form,

x1[n 1]
x2[n 1]

next state

1 0
1 1

x1[n]
x2[n]

present state

b1 a1
b2 a2

u[n]
[n]

inputs

(4.37)

[n] 0 1 x1[n]
x2[n] b3 0 u[n]

[n] (4.38)

A B C D , are the discrete-time state-space matrices. In the general case of an nth
order modulator, the dimensions of the A B C D matrices are n n n 2 1 n and
1 2, respectively. Observe that D [1 2] 0, indicating that the current loop filter output
[n] does not depend on the current quantizer output [n]. This is the state-space equivalent

of the “no delay-free loop” criterion.
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A shorthand notation of conveying this information, extensively used in the toolbox
(see Appendix B), is to put the state matrices together into a single (n 1) (n 2) matrix
ABCD given by

ABCD A B

C D
(4.39)

Once the state-space representation is known, simulation proceeds as follows. Know-
ing the states and u at instance n, (4.38) is used to obtain [n]. The modulator output [n]
is obtained by quantizing [n]. The states at the next instant (n 1) are determined using
(4.37), and the process repeats.

4.9 Conclusions

In this chapter, we discussed high-order modulators. Special attention was devoted to the
stability of high-order delta-sigma loops, both with multi-bit and with single-bit quantizers.
For multi-bit loops, the quantizer’s gain varies only slightly with its input signal, and hence
tight theoretical bounds can be found for the signal range that ensure stable loop operation.

For single-bit loops, the equivalent gain of the quantizer varies strongly with the value
of its input. For this reason, linearized stability analysis becomes a difficult task.

The optimization of the noise transfer function zeros and poles, already discussed for
second-order loops in Chapter 3, was generalized here for higher order modulators. The
most commonly used loop architectures were also described, analyzed, and compared.
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CHAPTER 5

MULTI-STAGE AND MULTI-QUANTIZER
DELTA-SIGMA MODULATORS

converters rely on oversampling and noise-shaping to reduce the power of the quanti-
zation noise in the signal band. The SQNR (signal-to-quantization noise ratio) can be in-
creased by increasing the OSR (oversampling ratio), and/or the quantizer resolution, and/or
the order or aggressiveness of the loop filter. In this chapter, we discuss modulators
that combine an alternative strategy – noise cancellation with noise-shaping.

5.1 Multi-Stage Modulators

As discussed in the previous chapter, the SQNR of a modulator can be increased by
raising its OSR, and/or the order L of the loop, and/or the number of levels M in the quan-
tizer. However, there are practical limits to all these parameters. Higher OSR requires more
power, and this is limited by the speed allowed by the available IC technology. Raising the
order of the loop filter is subject to stability considerations, which limit the maximum
permissible input signal amplitude for higher order loops. This counteracts the expected
improved noise suppression. Finally, the SQNR can also be increased by using more bits in
the internal quantizer, but this requires a flash ADC and necessitates additional circuitry to
ensure the in-band linearity of the internal DAC. (This subject will be discussed in Chapter
6.) As a result, the complexity of the quantizer grows exponentially with the number of
bits used. Hence, the quantizer resolution is seldom higher than 4 or 5 bits.
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A different strategy is to cancel the quantization noise in addition to noise filtering us-
ing a multi-stage structure for the modulator. The quantized outputs can then be combined
in a way that reduces the overall noise power. This chapter is discusses modulators that
use such schemes.

5.1.1 The Leslie–Singh Structure [1]

ADC

1
L0

L1

u

H1

H2

1

e1

2

e2

e1

Figure 5.1 The L 0 cascade (Leslie–Singh) structure.

A simple two-stage delta-sigma ADC is illustrated in Figure 5.1. It contains an Lth-
order modulator as its first stage, and a static (i.e., zero-order) ADC as its second stage.
The outputs of the two stages, 1 and 2, are digitally filtered and combined to obtain the
overall output .

As shown, the quantization error e1[n] of the input stage is extracted in analog form
by subtracting the input signal 1 of the internal quantizer from its output 1. The error e1
is then converted into digital form by a multi-bit (e.g., 10-bit) ADC that forms the second
stage of the modulator. This introduces another quantization error e2[n], which however
can be much smaller than e1[n], since the second-stage ADC (not being in a feedback
loop) is allowed to have arbitrary latency, and hence it can be realized as a low-complexity
multi-bit pipeline structure.

Next, the outputs 1 and 2 of the two stages are filtered by the digital stages H1
and H2, respectively, and added. Usually H1(z) z . This simply implements a delay
that equals the latency of the second-stage ADC. Also, H2 can be chosen as the digital
equivalent of the NTF of the first stage. Then, subtracting the output of H2 from that of H1
produces the output

V (z) H1(z)V1(z) H2(z)V2(z)
z [STF1(z)U (z) NTF1(z)E1(z)] NTF1(z)z [E1(z) E2(z)]
z [STF1(z)U (z) NTF1(z)E2(z)] (5.1)

In comparing the output V (z) with the first-stage output V1(z), it is clear that (apart
from the delay of k clock periods) the difference is that E1(z) is replaced by E2(z) in
V (z). As explained above, E2(z) may be much smaller than E1(z) since it is much cheaper
to construct a multi-bit pipeline ADC than a multi-bit loop quantizer for the first stage.
Hence, this technique can enhance the SQNR by as much as 25 to 30 dB.
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To obtain e1[n] by simple subtraction, the operation of the quantizer must be delay
free, which may not be practical. In this case, the signal 1 must be delayed before the
subtraction is carried out. To avoid the subtraction altogether, the input signal of the second
stage can be chosen as 1[n], the input signal of the first-stage ADC, instead of e1[n]. It is
given by

Y1(z) V1(z) E1(z) STF1(z)U (z) [NTF1(z) 1] E1(z) (5.2)

We keep H1(z) z , but choose the other filter function as
H2(z) NTF1(z) (NTF1(z) 1) , so that the overall output now becomes

V (z) z [STF1(z)U (z) NTF1(z)E1(z)] (5.3)
NTF1(z)

NTF1(z) 1
z STF1(z)U (z) [NTF1(z) 1] E1(z) E2(z)

Assuming perfect cancellation of like terms,

V (z)
z STF1(z)
1 NTF1(z)

U (z)
z NTF1(z)
1 NTF1(z)

E2(z) (5.4)

results. In the signal band, NTF 1 , and hence the SQNR obtained with the new V (z)
is very close to the one obtainable with the V (z) given in (5.1). A disadvantage of using

1[n] as the input to the second stage is that it contains u[n] as well e1[n], and hence the
second stage must be able to handle a larger input signal. Also the second stage must have
low distortion, to avoid generating harmonics of u[n].

Consider next one of the low-distortion structures discussed in Section 4.7 being used
as the first stage. Suppose that in the CIFB modulator of Figure 4.26 the conditions b a

for all i N and b 1 1 hold. Then STF(z) 1, and the output signal of the last
integrator is

X (z) Y (z) b U (z) STF(z)U (z) [1 NTF(z)] E(z) b U (z)
[1 NTF1(z)] E(z) (5.5)

This signal can be used as the input signal of the second-stage ADC. It does not contain u,
and hence the second stage has a smaller input signal, and need not be very linear. Note,
however, that the time domain signal x [n] now contains a linear combination of delayed
versions of e[n], which can be larger than e[n], and hence it should be scaled appropriately.

It can easily be seen that similar conclusions apply to the other low-distortion struc-
tures: it is possible to extract 1[n] u[n] e[n] , and use it as the input to the second stage.
As an example, Figure 5.2 shows a second-order low-distortion CIFF modulator. Simple
analysis shows that its noise transfer function is (1 z 1)2, its signal transfer function is
1, and the output signal of its second integrator is X2(z) z 2E1(z). Hence, X2(z) can be
used directly as the input to the second stage of the structure.

It should be noted that canceling, rather than filtering out, the noise e1[n] is an in-
herently ill-conditioned operation. Thus, a small error in the transfer functions involved
may result in a large “leakage” of the e1[n] noise. Also, the scaling of the signal fed to the
second stage needs to be carefully considered. It should not overload the second stage, but
should secure a good dynamic range for it.

2 ( ), as written, is non-causal. Multiplying 2 ( ) and 1 ( ) by 1 yields a realizable pair of filters and
preserves the desired noise cancellation.
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Figure 5.2 Low-distortion CIFF modulator used as first MASH stage.

5.2 Cascade (MASH) Modulators
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Figure 5.3 A two-stage MASH structure.

An obvious extension of the Leslie–Singh modulator, which historically preceded it, is
the cascade modulator, also called multi-stage or MASH (for Multi-stAge noise-SHaping)
modulator [2, 3, 4]. Here, the second stage is realized by another delta-sigma modulator.
The basic concept is illustrated in Figure 5.3. The output signal of the first stage is given
by

V1(z) STF1(z)U (z) NTF1(z)E1(z) (5.6)

where STF1 and NTF1 are the signal and noise transfer functions, respectively, of the first
stage.

As shown in Figure 5.3, the quantization error e1 of the input stage is found in analog
form by subtracting the input to its internal quantizer from its output. It is then fed to
another loop forming the second stage of the modulator, and converted into digital
form. Hence, the output signal of the second stage in the z-domain is given by

V2(z) STF2(z)E1(z) NTF2(z)E2(z) (5.7)
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where STF2 and NTF2 are the signal and noise transfer functions, respectively, of the
second stage. The digital filter stages H1 and H2 at the outputs of the two modulator
loops are designed such that in the overall output V (z) of the system the first-stage error
condition E1(z) is canceled. By (5.6) and (5.7), this is achieved if

H1 NTF1 H2 STF2 0 (5.8)

holds. The simplest (and usually most practical) choice for H1 and H2 that satisfies (5.8)
is H1 STF2 and H2 NTF1. Since STF2 is often just a delay, H1 is easily realized. The
overall output is then ideally given by

V H1V1 H2V2 STF1 STF2 U NTF1 NTF2 E2 (5.9)

In a typical case, both stages of the MASH may contain a second-order loop, and their
transfer functions may be given by

STF1(z) STF2(z) z 2 (5.10)

and
NTF1(z) NTF2(z) (1 z 1) 2 (5.11)

Then, the overall output will be

V (z) z 4 U (z) (1 z 1)4E2(z) (5.12)

Thus, the noise-shaping performance is that of a fourth-order single-loop converter, while
the stability is that of a second-order one, since both internal feedback loops are of order
two.

If the condition (5.8) is not exactly satisfied due to imperfections in the implemen-
tation of the analog transfer functions, then E1 will appear at the output, multiplied by
STF2NTF1 NTF1STF2 , where the subscript a denotes the actual value of the analog
transfer function. As will be shown in Section 5.3, this may result in a serious deterioration
of the noise performance of the converter.

As discussed in the preceding section, it is advantageous for MASH systems as well
to use a low-distortion loop filter structure in all stages. This makes it possible to obtain
the first-stage error e1[n] without any subtraction, for entering it into the second stage. In
addition, of course, the low-distortion property improves the performance of both stages.

An advantage of the MASH configuration is that the remaining error in the output V is
the shaped quantization error e2[n] of the second stage, operating with an input e1[n] which
is itself noise-like. Hence, the second-stage quantization error e2[n] is very similar to a
true white noise. This remains valid even if the first-stage noise contains tones. Figure 5.4
shows the simulated output spectra of the input stage (V1) and the overall modulator (V ) for
a 2-2 MASH with single-bit quantization. V1 contains the third harmonic near f 0 01,
which is greatly reduced in V . Thus, a MASH modulator is less likely to need dithering
than a single-stage one.

In practice, the 1 input to the second modulator stage needs to be scaled to fit within the stable input range. For
a second-order, single-bit first stage, the usual scaling factor is 1 4. If multi-bit quantization is used in the
first stage, the scaling factor can be greater than 1. The inverse of this scaling factor 1 needs to be included in

2 in order to cancel 1. For 1, this reduces 2 in the output, and thus enhances the SQNR.
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Another useful property of the MASH structure is that it often allows the use of a
multi-bit quantizer in the second stage, without any dynamic or other correction of the
DAC nonlinearity [5]. This is because the nonlinearity error of the second-stage DAC (as
part of V2) is multiplied by H2(z) before being added into the output signal V . As shown
above, H2(z) contains the NTF of the first stage. Since this NTF1(z) is a highpass filter
function, the nonlinearity error of the second-stage DAC is suppressed in the baseband.

Also, since the input to the second stage contains the quantization error e1[n] of the
first stage rather than the input signal, no harmonic distortion of the signal is generated
in the second stage, and (especially for high OSR and small nonlinearity error) the small
added noise due to the second-stage DAC nonlinearity is usually tolerable.
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Figure 5.4 Output spectra for a 2-2 MASH modulator.

The principle of quantization error cancellation implemented by the two-stage MASH
structure of Figure 5.3 can be extended. Just as the second stage of the MASH is used to
cancel the quantization error e1[n] of the first stage, a third stage can be added to cancel
e2[n], the quantization error of the second stage (Figure 5.5). The cancellation conditions
can be found exactly as for the two-stage MASH. They are

H1 NTF1 H2 STF2 0 (5.13)
H2 NTF2 H3 STF3 0

Under these conditions, e1 and e2 are canceled in the overall output signal:

V [STF1 U NTF1 E1] H1 [STF2 E1 NTF2 E2] H2

[STF3 E2 NTF3 E3] H3

STF1 H1 U NTF3 H3 E3 (5.14)

Using (5.13) to express H3, we can rewrite V as

V STF1 H1 U
H1 NTF1 NTF2 NTF3

STF2 STF3
E3 (5.15)

As discussed earlier, H1 and the signal transfer functions usually contain only simple de-
lays, or have a flat gain in the signal band, and hence they will not shape either the signal or
the noise significantly. However, the NTFs provide suppression over the baseband. Hence,
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under ideal conditions, the quantization errors of the first two stages are canceled, while
that of the third stage is filtered by the product of the NTFs of all three stages. Thus, if
all three stages contain second-order loop filters, the overall NTF of the structure will be
equivalent to that of a sixth-order modulator, but without the troublesome stability prob-
lems inherent in such a high-order loop.

H1ADC 1

ADC 2 H2

ADC 3 H3

u

e1

e2

1

2

3

Figure 5.5 A 3-stage MASH ADC.

Since the three-stage MASH is normally used only when it is necessary to pro-
vide very high SQNR performance, the leakage of the poorly filtered quantization
noise of the first stage due to imperfect matching between the analog transfer functions
(NTF1 2 3) STF1 2 3 and the digital ones (H1 2 3) is a very critical issue here, and such
leakage limits the practically achievable resolution. The topic of noise leakage will be
discussed in the next section.

5.3 Noise Leakage in Cascade Modulators

In high-order single-stage modulators, the imperfect matching of the passive loop filter
elements (usually capacitors) and the finite gain of the active ones (usually opamps) will
change the coefficients of the NTF and STF, but will usually not affect the SQNR per-
formance significantly. This is because the quantization error is suppressed by filtering,
and as long as the gain L1 of the loop filter remains sufficiently large in the signal band,
NTF 1 L1 1 will continue to hold there. It can be easily shown,for example, that

for opamp gains as low as OSR , the SQNR decreases by only a few decibels from its
ideal value for high-order single-stage ADCs.

In a two-stage MASH structure, by contrast, a large SQNR is achieved by accurate
cancellation of the first-stage quantization error e1, which is shaped only by a low-order
NTF1. As (5.13) shows, this requires accurate matching between the nominally identical
mixed-signal (analog and digital) transfer functions H1 NTF1 and H2 STF2. For the
designer, it is important to know how precise the analog circuit needs to be to obtain good
performance for the cascade, namely how accurately the components need to be matched,
and what is the minimum acceptable gain for the opamps, etc., in order to keep the leakage
of e1 acceptably low. For a three-stage MASH, the leakage of e2 also needs to be analyzed.
Even for relatively simple structures, the equations describing the leakage can become very
complex.
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As is usual for delta-sigma modulators, accurate behavioral simulation is the most
reliable technique for predicting the effects of all nonidealities on the SQNR of a MASH
modulator. However, under some (usually valid) conditions, useful and simple results can
be obtained using linear analysis and approximations, as will be shown next.

Referring back to (5.14), the transfer functions from e1 and e2 to the overall output
are

H 1 H1 NTF1 H2 STF2

H 2 H2 NTF2 H3 STF3 (5.16)

respectively. Ideally, both of these leakage transfer functions are identically zero, but since
the NTF and STF functions are realized using imperfect analog components, they will be
inaccurate. Hence, H 1 and H 2 will be nonzero, allowing e1 and e2 to leak into . We can
usually justify the following simplifying assumptions:

1. The leakage of e2 is less important than that of e1 . This is because the terms in H 2
represent higher-order noise-shaping than those in H 1 . As an example, in a 2-2-1
MASH, the noise-shaping due to H 1 is at most of order 2, while that of H 2 is of
order 4. Also, often e2 is smaller than e1 if a multi-bit second-stage quantizer is used.

2. In H 1, the effect of an imperfect NTF1 dominates that of the imperfect STF2 even
though the gain error is the same for both. This is because the second stage is followed
by the noise-shaping block H2 NTF1. Hence, error signals due to imperfect STF2
are inherently noise shaped. The same is not true for errors due to an imperfect NTF1,
since the H1 block has unity gain in the signal band.

3. In view of assumption 2, we can set STF2 H1 1 in (5.16), as a first approximation.
Then

H 1 NTF1 H2 NTF1 NTF1 (5.17)

results, where the subscripts a and i denote actual and ideal functions, respectively.

4. From (5.3), NTF1 1 (1 L1), where L1 is the gain of the loop filter from the
quantizer output to its input. Assuming only small errors, L1 1 holds for both the
ideal and actual functions. Then, (5.17) can be further approximated by

H 1
1

L1

1
L1

(5.18)

Equation (5.18) is much simpler to evaluate than the complete original relations (5.14)
or (5.16). It can be used for both two- and three-stage MASH modulators.

As an illustration, consider the simple case of a 1-1 or 1-1-1 MASH modulator. The loop
filter for the first stage is just a delaying integrator, with an ideal transfer function

I1(z)
az 1

1 z 1 (5.19)

If the integrator is realized using switched-capacitor (SC) circuitry such as shown in
Figure 5.6, then a relative error D in the nominal capacitance ratio C1 C2 will change the
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Figure 5.6 A delaying switched-capacitor integrator used in a first-order modulator.

factor a, and the finite dc gain A of the op amp will change both a and the value of the pole
(ideally at p 1). The resulting actual transfer function is

I (z)
a z 1

1 p z 1 (5.20)

where, as a simple analysis shows, for D 1 and (a A) 1,

a a 1 D
(1 a)

A
(5.21)

and
p 1

a

A
(5.22)

Since here L1(z) I (z), by (5.18), the leakage transfer function is

H 1
z 1

a

z p

a

1
a

a

A
(z 1) D

1 a

A

1
A

(z 1)
D

a

1 (1 a)
A

(5.23)

As (5.23) shows, there is an unfiltered leakage component approximately equal to E1 A,
and a first-order-filtered component given approximately by (z 1) (1 1 a) A E1.
For a high specified SQNR, a very-high-gain opamp with fast settling is required to reduce
the unfiltered leakage to a sufficiently low level. If the OSR is low, then the second com-
ponent will also be significant, requiring D 1. Hence, the matching accuracy of the
capacitors must also be very high.

Errors in the path coupling the first and second stages will also add to H 1 E1. How-
ever, their effects on the output V will be at least first-order filtered, since the error signal
will pass through the H2 filter.

For a second-order first stage, the leakage of e1 can be reduced. The calculations,
however, become much more complicated. Consider, e.g., the 2-0 MASH (Leslie–Singh)
modulator (Figure 5.1), with the ideal output given in (5.1). Assume that the first stage
is realized by the low-distortion modulator structure shown in Figure 5.2, built from two
cascaded integrators. The ideal transfer functions of the integrators are given by (5.19) and
their actual transfer functions by (5.20) through (5.22).
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As a result of these changes, and the inaccuracies in the other coefficients b in the
loop, there will be leakage of the first-stage quantization error E1 to the output V of the
overall ADC system. It is useful to represent the parasitic leakage transfer function by its
Taylor-series expansion around z 1 [6]:

H 1(z) A0 A1(1 z 1) A2(1 z 1)2 (5.24)

where, assuming A 1 and D 1 , the coefficient values are

A0
1
A2

A1
1
a1

1
a2

1
A

A2
1

a1a2
1 2 1

1
a1a2

1
a2

2
A

2D

a1a2
(5.25)

The first term in the series expansion of H 1 represents the unfiltered leakage. Since it
is inversely proportional to A2, it is usually very small. The second term gives the linearly
filtered error leakage, the third the quadratically filtered leakage and so on. For OSR 1
and typical opamp gains and matching errors, the linear and quadratic terms containing
A1 and A2 tend to dominate H 1, since A0 is normally very small, and since high-order
filtering suppresses the terms beyond the quadratic one.

The derivation given above ignored leakage due to the errors in the coupling branch
and in the second stage. In this case, these errors contribute only to the quadratic and
high-order terms (A2 A3, etc.), since H2 is here a second-order highpass filter.

As an illustration, for A 1000 and D 0 5%, we find that A0 10 6 and the values
of coefficients A1 A4 are between 0.001 and 0.2. The multipliers (1 z 1) introduce
highpass filtering into the terms in H 1, which reduces their effects on the inband noise. The
reduction increases rapidly with increasing L and OSR. For example, with OSR 64, the
linear term (L 1) is reduced by a factor around 1/30, the quadratic term by about 1/1000,
and the cubic one by about 1/30,000. Hence only the first three terms are significant.

5.4 The Sturdy-MASH Architecture

The high sensitivity of the cascade ADC to analog circuit imperfections can be re-
duced, and the noise cancellation logic eliminated, by a modification of the MASH archi-
tecture. The block diagram of the modified modulator is shown in Figure 5.7 [7, 8]. As the
figure reveals, there are two differences between the MASH and sturdy-MASH structures:
(1) in the modified structure, the output of the second stage is coupled back into the first
loop; (2) the noise cancellation logic (H1 and H2) is absent in the unmodified structure.

As a result of these changes, the output of the modulator is now given by the relation

V STF1 U NTF1 NTF2 E2 NTF1 (1 STF2) E1 (5.26)

Comparing this equation with equations (5.8) and (5.9) reveals that the condition (5.8) for
canceling e1 in the output is now replaced by (1 STF2) 0. On the one hand, this is
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Figure 5.7 Block diagram of a sturdy-MASH modulator.

a bad deal, since STF2 cannot be a delay-free function, so this condition is impossible to
satisfy even with ideal circuitry. On the other hand, in the signal band, the magnitude of
the error 1 STF2 can be reduced by choosing it with properties similar to those of the
noise transfer functions. Thus, selecting STF2 1 NTF2 yields

V STF1 U NTF1 NTF2 (E1 E2) (5.27)

As a result, the high-sensitivity noise cancellation is replaced by low-sensitivity noise shap-
ing, while still retaining the improved stability properties of the MASH scheme. For its
robust performance, the modified scheme was named Sturdy-MASH or SMASH.
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Figure 5.8 A 2 + 2 SMASH modulator.

Figure 5.8 illustrates a 2+2 SMASH modulator with NTF1 NTF2 (1 z 1)2.
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As a comparison of (5.9) and (5.27) shows, E2 is replaced by E1 E2 in a SMASH
ADC. Since e1 and e2 are uncorrelated noises, their powers add, and thus for e1 e2, the
noise increment is around 3 dB. Notice also that the added noise e2 is inserted at the output
of the first quantizer Q1, and hence it is suppressed by the loop filter before reaching the
input of Q1. Thus, it does not tend to overload Q1. See [8] for a description of a SMASH
modulator that uses 35-dB opamps to achieve SNDR = 74 dB with an OSR =16; [9] and
[10] describe additional modifications that can improve the performance of SMASH even
further.

5.5 Noise-Coupled Architectures

H (z)u
1

z 1
e

(a)

H (z)u
1

(b)

1
1 1

z 1

Figure 5.9 Noise-coupling in a ADC: (a) Actual circuit; (b) an alternative implementation.

Another strategy of enhancing the noise-shaping performance of the ADC is
noise-coupling [11, 12], illustrated in Figure 5.9. Part (a) shows the actual circuit, and
part (b) an alternative implementation. The quantization error e is acquired by subtracting
the input of the quantizer from its D/A converted output. The difference is delayed, and fed
back to the input of the quantizer. The effect is the replacement of E(z) by (1 z 1)E(z).
Figure 5.9(b) shows that this is equivalent to inserting an additional integrator into the loop
filter. There is now no need for a fast multi-input adder at the input of the quantizer. This
feature is particularly useful for low-distortion feed-forward modulators, which normally
require an extra opamp with low feedback factor to carry out the summation of several
signals.

The input signal of the quantizer may be somewhat increased by the added branch,
since it now contains the first difference e[n] e[n 1] of the quantization error e[n].
However, e[n] and e[n 1] are only weakly correlated. Hence, the linear range of the
quantizer is reduced at most by about 3 dB. On the positive side, the filtered error acts
as a dither signal at the input of the quantizer. This dither converts tones and harmonics
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into random noise, and improves the SFDR and THD parameters significantly. Hence,
noise-coupled converters often achieve SFDR values over 100 dB, and are well-suited for
applications where linearity is a key requirement.
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Figure 5.10 A third-order ADC: (a) Without noise-coupling; (b) and (c) with first-order noise-
coupling.

It is possible to enhance the effect of noise-coupling by using more complex circuitry
in the coupling path. As an illustration, Figure 5.10(a) shows a third-order feed-forward
modulator without noise-coupling, and Figures 5.10(b) and (c) show modulators with first-
order noise coupling.

Figure 5.11 shows modulators with second-order noise-coupling. Noise-coupling al-
lows a reduction of the number of opamps, and hence lowers the power dissipation. First-
order noise-coupling can reduce the number of active stages by 1; second-order coupling
by 2.

Since the noise-coupling network follows the input stages of the loop filter, it does not
affect the sensitivity to element value variations and offset errors. Simulations indicate that
the performance of the modulator remains minimally affected when the opamp dc gains are
as low as 30 dB and the element errors are as large as 5%.



130 MULTI-STAGE AND MULTI-QUANTIZER DELTA-SIGMA MODULATORS

u

1

1 1

3

3

e1

1

1 1

1

1 1

1

1 1

e1

z 1

u

(a)

(b)

1 z 1

1

1 1

e1
u

(c)

2z 1 z 2

1

1 1

Figure 5.11 A third-order ADC: (a) Without noise-coupling; (b) and (c) with second-order
noise-coupling.
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5.6 Cross-Coupled Architectures

Noise-coupling is an effective way of improving the performance of split and time-
interleaved ADCs. Figure 5.12(a) shows a split modulator. This structure was used
to enable digital calibration of the ADC [13]. The two halves receive the same input signal
u, and their outputs are added. Assuming STF1 STF2 1 and NTF1 NTF2 NTF,
the overall output is given by

V U NTF
E1 E2

2
(5.28)

Since e1 and e2 are uncorrelated due to the mismatches between the two half circuits and
also to noise, the SQNR of the full circuit is improved by 3 dB compared to that of each
half. For a prescribed SQNR, this allows cutting the capacitance and transconductance
values in the split circuit to half. This in turn results in the split circuit needing about the
same amount of power as a single-path ADC.

Cross-coupling the quantization errors e1 and e2 results in the structure of Fig-
ure 5.12(b). The output is now

V U NTF (1 z 1)
E1 E2

2
(5.29)

Thus, an additional first-order noise-shaping results.

Further improvement can be achieved by time interleaving the two half circuits, with
a half clock period shift (Figure 5.12(c)). The output signal of the resulting modulator is
now given by

V U NTF (1 z 1 2)
E1 E2

2
(5.30)

Since at frequencies much lower than the clock rate 1 z 1 2 1 z 1 2 holds,
the SQNR of the time interleaved ADC will be about 6 dB higher than that of the cross-
coupled modulator of Figure 5.12(b). The noise transfer functions of the three modulators
of Figure 5.12 are compared for a second-order loop filter in Figure 5.13.

References [15] and [14] describe experimental results for single-path and time-
interleaved noise-coupled modulators.

5.7 Conclusions

In this chapter, multi-stage and multi-quantizer modulators were discussed, and their ad-
vantages and drawbacks relative to the single-stage ones analyzed. The inherent ill con-
ditioning of some of these modulators was pointed out, and techniques were given for
estimating the noise leakage due to the imperfections of the analog components. Recent
research in this area also explores other configurations, such as the 0-L MASH, where the
first stage is a memoryless converter, and the second stage (a modulator) converts the
error of the first one [16, 17, 18].
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Figure 5.12 (a) Split modulator; (b) noise-coupled split (NCS) circuit; (c) noise-coupled time
interleaved (NCTI) modulator.
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CHAPTER 6

MISMATCH-SHAPING

6.1 The Mismatch Problem

The inherent linearity of a one-bit DAC allows highly linear ADCs and DACs to be
constructed without using highly accurate components. Unfortunately, one-bit quantiza-
tion puts severe constraints on the achievable SQNR at moderate OSR, and also makes
continuous-time modulators unduly sensitive to jitter. Multi-bit quantization can solve
both problems but renders the associated multi-bit DAC sensitive to element mismatch.
For example, simulations show that the two elements used to make a 3-level DAC must
match to within 0.01% in order to achieve distortion lower than 90 dBc . Since obtaining
this degree of matching is difficult, efficient techniques for making multi-bit DACs linear
despite element mismatch have great practical value.

One solution to the mismatch problem is calibration. Factory calibration, such as
laser-trimming of thin-film resistors at the time of manufacture, is able to achieve the req-
uisite matching but is vulnerable to aging and packaging shifts. Background or foreground
(on-demand) calibration of current sources circumvents packaging stress but requires ana-
log calibration circuitry. In contrast, digital correction (Figure 6.1) dispenses with the
analog calibration hardware and instead corrects DAC errors with a lookup table (LUT),
that ensures the digital data fed to the decimation filter accurately reflects the analog output
of the DAC [1]. As illustrated in Figure 6.1, this technique effectively puts the DAC in the
forward path of the loop since the LUT and the DAC outputs are equal. As a result, the
DAC element errors (ee) are shaped by the NTF. The drawbacks of both analog calibration
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and digital correction are that the DAC errors need to be measured accurately, and that
system performance will degrade if those errors drift.

ADC

D
A

C

LUT

ee

ee

Digital
output

virtual
short

u

Loop Filter

Figure 6.1 Digital correction of DAC errors in a ADC [1].

This chapter describes techniques that shape mismatch-induced errors. The remark-
able feature of these methods is that they are blind – no knowledge of the actual errors is
needed, and thus slowly-changing errors are accommodated automatically.

6.2 Random Selection and Rotation

Consider a 3-level DAC constructed from two nominally-equal elements. Without loss of
generality, we can assume that the DAC is unipolar, and that the average value of the two
elements is unity. Under these assumptions the nominal outputs of the DAC correspond-
ing to input codes 0, 1, and 2 are likewise 0, 1, and 2. If the elements are mismatched, such
that one has value 1 and the other has value 1 , then the endpoints are unaffected,
but the middle level is either too high or too low. If the same element is always used to
construct the middle level, then the DAC acts as a static nonlinearity and consequently pro-
duces distortion. (Since a 3-level DAC’s transfer characteristic can be exactly described
by a quadratic, the distortion is purely second order.) However, if the element used to
construct the middle level is instead chosen randomly, then element mismatch turns into
white noise. Having realized that we can whiten the error caused by element mismatch in
a two-element DAC, the natural question for an apostle of is “Can we shape it?”

One interpretation of the gospel is that it is acceptable to make an error now, as
long as we make up for it later. When responding to the middle code, choosing element 1
results in an error of , whereas choosing element 2 results in an error of . Thus, when
responding to the middle code, we should choose element 2 after choosing element 1, and
vice versa. To see that the error is shaped, consider the hypothetical input sequence

dac input 0 0 1 0 2 1 1 1 2 (6.1)

If we follow the alternating selection rule above, then the error sequence is

dac error 0 0 0 0 0 (6.2)

and thus the integrated error is

integrated error 0 0 0 0 0 (6.3)

In essence, we define “unity” as the average of the DAC’s two elements. Of course, this average value will vary
from DAC to DAC, but such variation is equivalent to variability in the DAC’s full-scale. We can ignore this
variation when considering DAC linearity, just as we did with one-bit DACs.
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Note that consecutive values in the integrated error start when element 1 is used in re-
sponse to code 1 and terminate on the next code 1 when element 2 is used. Since this
integrated error sequence is bounded, we can conclude that the actual error, obtained by
differentiating the integrated error, is (at least) first-order shaped.

Figure 6.2 Average output PSDs for a 2-element DAC with 1% element mismatch.

Figure 6.2 compares the aforementioned element-selection schemes in the context of
a two-element DAC driven by a three-level, fifth-order modulator with H 1 5
and operated at OSR 32. With a perfect DAC and a 3-dBFS input, the simulated
SNDR is 85 dB. Figure 6.2(a) shows that if the elements have 1% variation and the
standard static selection strategy is used, then the SNDR degrades to 50 dB. The spectrum
also contains several even-order harmonics, including a strong ( 53-dBFS) second har-
monic. Random selection (Figure 6.2(b)) eliminates the distortion terms, but the SNDR
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is still 30 dB worse than the ideal SQNR. Figure 6.2(c) demonstrates that our alternate se-
lection strategy restores the SNDR to within 2 dB of ideal and completely eliminates the
DAC-induced harmonics. (The small third-order harmonic is present in the modulator data
itself.) For this 2-element example, dynamic element selection appears to work very well.

DAC
2-level1

1

1

1

Element
Selection

Logic

M

Modulator

[0 M]

Unit-element DAC

Analog output
Digital

DAC
2-level

DAC
2-level

DAC
2-level

Figure 6.3 A DAC system.

To study the M-element case, a more aggressive fifth-order digital modulator with
H 2 5 operated at a reduced OSR of 16 will be used. The DAC arrangement is

illustrated in Figure 6.3, and is evaluated for the effect of 1% DAC element variation.
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Ideal: SNDR = 101 dB
No shaping: SNDR = 55 dB

Figure 6.4 Average PSD for a 16-element DAC with 1% element mismatch – no shaping.

Starting with Figure 6.4, we see that if a static element selection strategy is used, then
mismatch degrades the SNDR from an ideal value of 101 dB to 55 dB and creates many
large harmonics. Using random selection (Figure 6.5) eliminates the distortion caused by
DAC mismatch and creates a flat noise floor. But at 62 dBFS, the in-band noise power is
still 40 dB higher than the ideal case.

Let us take a moment to compare this simulation result with a theoretical estimate.
For an M-element DAC whose elements have independent errors with a standard deviation

, the variance of the difference between the DAC output for code m and the line defined
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Figure 6.5 Average PSD for a 16-element DAC with 1% element mismatch– random selection.

by the endpoints is
2 2m(M m)

M
2 (6.4)

For a signal that spans many levels, the average value of 2

1
M 1 0

2 (M 1)
3

2 M 2 3 (6.5)

can be used to estimate the power of the mismatch noise. For 1%, M 16 and
OSR 16, and assuming the mismatch noise is white, the noise due to element mismatch
has an in-band power relative to the power of a full-scale sine wave of

MNP
M 2 3

(OSR)(M 2)2 2
8 2

3(M)(OSR)
60 dBFS (6.6)

Since the signal power is 3 dBFS, our SNDR estimate is therefore 57 dB, which is close
to the 59 dB result given in Figure 6.5.

To understand how to shape the mismatch of M elements, interpret the philosophy
as “If you make an error in the current cycle, then try to make the negative of that error in
the next cycle.” Since a DAC has no error for codes 0 and M , the negative of the error asso-
ciated with using certain elements equals the error of using the other elements. Thus, if we
select elements 1 to [0] at t 0, then at t 1 we ought to select the remaining elements.
However, we are only allowed to select [1] elements. Thus, we select elements [0] 1 to
[0] [1], and in so doing, we commit the error of not selecting the remaining elements.

To make up for that error, we continue selecting elements sequentially in subsequent cy-
cles until all elements 1 to M have been used once, at which point the accumulated error is

Defining as the value of element , the error for code is

1

1

1
1

1 1

(6.4) follows directly.
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Figure 6.6 Rotational element selection for the sequence {5, 6, 4, 6}.

zero and selection returns to the beginning of the element array. We expect this rotational

element selection strategy, depicted in Figure 6.6, to produce first-order shaped noise. This
expectation is confirmed in Figure 6.7, where we see that the noise due to mismatch now
has the characteristic 20-dB/decade slope of first-order shaping.
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Figure 6.7 Example usage pattern and spectrum for rotation.

Also visible in Figure 6.7 are harmonics of the signal as well as spurs that also tend
to follow a first-order slope. Although the spurs in Figure 6.7 are all below 100 dBFS,
simulation with a small ( 30 dBFS) input in the vicinity of f 1 64 reveals a mismatch-
induced second harmonic (H2) that approaches 80 dBFS. Since reducing OSR would
make the harmonic even larger, element rotation is less attractive when OSR is low. Fur-
thermore, since the preceding spectra are ensemble averages, the designer must also leave
sufficient margin to achieve adequate production yield.

To quantify the required margin, Figure 6.8 plots the cumulative distribution function
(CDF) of H2 obtained by a Monte Carlo simulation. The results indicate that for 99.9%
yield, 12 dB of margin is needed above the median H2 value. Schemes that can reduce
mismatch-induced spurs are therefore clearly of interest.

Before addressing the spur problem, let’s try to quantify the noise. According to
Figure 6.7, with 1% variation on 16 elements, rotation yields an in-band mismatch noise
power (MNP) of 90 dBFS at OSR 16. To obtain a theoretical estimate of MNP, first
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Figure 6.8 H2 cumulative distribution function for a 3 dBFS signal at f (4OSR). (OSR 16,
M 16, 1%, rotational selection.)

recall that the in-band power of white noise with power P that is first-order shaped is

P OSR

0

2d
2P

3(OSR)3 (6.7)

At each instant, the integrated mismatch error is equal to the sum of the mismatch
errors of the m elements that have been selected one time more than the other elements.
The power of this signal is thus given by averaging (6.4) over m to obtain the same result
as (6.5), i.e., P M 2 3. If we make the dubious assumption that the integrated error
is white noise, then the in-band mismatch noise power (MNP), relative to the power of a
full-scale sine wave (M2 8) is

MNP
2M 2

9(OSR)3(M2 8)
8 2 2

9M (OSR)3 76 dBFS (6.8)

which over-estimates the simulated value by 14 dB. Clearly, this analytical calculation is
too conservative for design purposes and thus simulations are required to achieve adequate
accuracy.

Element rotation was introduced in the technical literature in 1995 [2] where it was
dubbed data-weighted averaging (DWA) to contrast with the less effective individual-level

averaging (ILA) [3] element-selection scheme. Although the term DWA is currently in
common use and appeals to the engineer’s fondness for TLAs (three-letter acronyms), we
consider it to be less descriptive than “rotation.” Furthermore, since element rotation was
described in a patent two years earlier [4], our preference does not violate the convention
of giving naming priority to the first inventor.

6.3 Implementation of Rotation

In a DAC system, the complexity of the element selection logic (ESL) is somewhat
secondary because latency is not particularly problematic. However, in a ADC sys-
tem, the latency of the DAC feedback typically needs to be a fraction of the clock period,
and thus for high-speed applications the ESL must be simple. Fortunately, implementing
rotation is easy.
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Figure 6.9 Implementation of element rotation.

Figure 6.9 shows an implementation of rotation in which the thermometer-coded out-
put of the flash ADC is applied to a rotational shifter whose shift code is the output of a
digital integrator. Think of the output of the integrator as a pointer that points to the start
of the unused elements. At the end of each cycle, the pointer is incremented by the number
of elements selected, modulo M , so that the pointer always points to the start of the unused
elements. Since the current pointer value is independent of the current data, updating the
pointer is not a time-critical operation.
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Figure 6.10 Logarithmic shifter (M 8).

The delay of the shifter does eat into the time available for comparator regeneration,
and can therefore be time-critical in a high-speed design. Figure 6.10 depicts a fast rotator
structure whose delay is t log2 M , where t is the delay of a 2-input MUX. Two opti-



IMPLEMENTATION OF ROTATION 143

mizations can be used to reduce the delay of the MUX itself. First, as shown in Figure 6.11,
eliminate the inverter needed to make a non-inverting MUX. Second, since the shift code
(i.e., the pointer) is typically available in advance of the data, use large devices connected
to the S and S̄ signals. This arrangement increases the drive strength of the MUX without
increasing the load capacitance presented by subsequent MUXes, and thereby minimizes
the delay of the shifter.
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Figure 6.11 MUX with reduced D-Y delay.
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Figure 6.12 Shuffling of reference levels (M 4).

Even with such optimizations, the shifter adds delay to the critical regeneration-plus-
DAC-setup time and so can be a speed bottleneck. Instead of rotating the comparator
outputs after regeneration, the comparator inputs (i.e., the reference levels) can be rotated
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in advance of initiating regeneration as depicted in Figure 6.12 [7]. This reference-shuffling

technique maximizes the time available for regeneration, but requires an analog shifter. The
analog shifter can be constructed using the logarithmic shifter topology, but a structure that
uses M M-input analog MUXes, configured either as an arbitrary-connection permutation
(Figure 6.13(a)) or hardwired for rotation (Figure 6.13(b)), is usually faster.
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Figure 6.13 Analog shufflers (M 4): (a) Arbitrary permutation (b) hardwired rotation.
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Figure 6.14 Unary-to-binary converter (M 8).

Note that with reference shuffling, the conversion to binary must be done on shuffled
data, necessitating the use of a unary-to-binary converter, rather than a thermometer-to-
binary converter. A unary-to-binary converter is simply an adder with M 1-bit inputs and
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is most conveniently implemented with a tree of full- and half-adder cells as shown in
Figure 6.14.

It is rather fortuitous that implementing the rotation scheme is easier than the less-
effective random-selection strategy. To see why, note that fully-random selection requires
circuitry that supports all M! possible permutations, whereas rotation uses only M permu-
tations. If we content ourselves to support the latter number instead, then the preceding
structures with a random pointer can be used to implement partially-random selection.

6.4 Alternative Mismatch-Shaping Topologies

This section gives brief descriptions of several alternatives to rotation that provide reduced
tonal behavior at the expense of increased complexity and reduced mismatch suppression,
culminating in an arrangement that has been rigorously proven to be tone-free.

input
data

output
data

swapper

Figure 6.15 Butterfly shuffler.

6.4.1 Butterfly Shuffler

The butterfly shuffler depicted in Figure 6.15 consists of log2 M columns of M 2 swapper
cells arranged in a manner similar to the butterfly operations of an FFT [8]. Each swapper
cell operates independently according to the following two rules:

a. If the two incoming bits are the same, just pass them on.

b. If the input bits are different, route the ‘1’ to the bottom output if the most recent lone
‘1’ was routed to the top output, and vice versa.

This scheme equalizes the average 1s-density of the cell’s two outputs, and the multiple
layers of swapper cells ensure equal 1s-density among all of the shuffler’s outputs, thereby
accomplishing first-order shaping.

In contrast to a rotational shuffler which has log2 M bits of state, there are M 2 log2 M

bits of state in a butterfly shuffler. This extra state information leads to more exotic ele-
ment usage patterns (Figure 6.16) and a reduced likelihood of periodic behavior compared
to plain rotation. The reduced periodicity is accompanied by a reduction in the visible
harmonics.
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Figure 6.16 Example butterfly shuffler usage pattern and spectrum.

6.4.2 A-DWA and Bi-DWA
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Figure 6.17 Example A-DWA usage pattern and spectrum (increment = 5).

The reason why plain rotation produces spurs is that it is deterministic. One can
envision adding randomness by renumbering the elements whenever they have all been
used equally, but such a scheme is complex to implement in hardware. Instead, advancing

data-weighted averaging (A-DWA) [9] increments the starting value of the pointer each
time it completes a full rotation. Figure 6.17 shows a simulated usage pattern and spectrum
using the recommended increment of M 3 5. The simulated spectrum exhibits tones
that are less distinct than rotation, but the tonality and SNDR are worse than those of a
butterfly shuffler.

Other ideas have been tried, but a particularly simple and effective one, dubbed
bi-directional data-weighted averaging (Bi-DWA)[10], involves interleaving forward and
backward rotation as illustrated in Figure 6.18. Since the mismatch spectrum in Figure 6.18
has clear shaping and is remarkably free of tones, and since further simulations indicate
these properties are robust, the 6-dB SNDR penalty compared to plain rotation would seem
to be a price worth paying.
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Figure 6.18 Example Bi-DWA usage pattern and spectrum.
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6.4.3 Tree-Structured ESL

Figure 6.19 depicts the final first-order mismatch-shaping system that we consider. In this
system, incoming (m 1)-bit data representing values in [0 2 ] is successively split into
two reduced-width data streams until the bit width is unity. The resulting 2 one-bit s

signals select which of the 2 DAC elements are enabled. (s stands for selection vector.)

1/2

1/2

k

k 1

1
s [n]

x1[n]

k
x0[n]

x[n]

Figure 6.20 Signal processing equivalent of a switching block.

Each of the switching blocks, S , in Figure 6.19 implements the signal-processing
shown in Figure 6.20. (The k subscript indicates the layer number of the block, while r

gives the block location within the kth layer. The layer numbers, k, go from right to left
so that the bit-width of S ’s outputs is k.) From Figure 6.20 we see that the sum of each
block’s two outputs is equal to its input. The s [n] signal is chosen to ensure that the
division by 2 results in an integer and is also chosen to be a shaped sequence. Specifically,
abbreviating s [n] with s[n],

s[n]
0, x[n] even
1, x[n] odd and previous non-zero sample of s 1
1, x[n] odd and previous non-zero sample of s 1

(6.9)

which is the same rule we used in our alternate-selection strategy for a 2-element DAC.
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Figure 6.21 Example switching block implementation.

Figure 6.21 shows an implementation of a switching block that follows (6.9) [11]. In
this diagram, a (k 1)-bit digital signal representing values in [0 2 ] consists of a k-bit
signal representing values in [0 2 1] plus a 1-bit signal representing the values 0 and
1. This redundant LSB representation eliminates the adders depicted in Figure 6.20 and
hence achieves both simplicity and speed.
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Figure 6.22 Simulation of first-order tree-structured mismatch shaping.

Since the sum of the outputs of a switching block equals its input, the sum of the
components of s equal the shuffler input , and thus the nominal output of the DAC is
. Also, since each component of s is equal to M plus a linear combination of the

s sequences used within the switching blocks, and since the s sequences are first-order
shaped, the mismatch-induced noise is first-order shaped. Figure 6.22 shows an example
usage pattern and spectrum. For the element usage plot, the elements are numbered in bit-
reversed order to emphasize the initial similarity with rotation. Looking at the spectrum,
we see some evidence of harmonics and an SNDR that is 7 dB worse than rotation.

However, this is not the end of the story. Recall that the alternate-selection strategy
chooses element 2 after choosing element 1, and vice versa, whereas our understanding
of rotation suggests that after completing a rotation, meaning after using both elements
equally, it is allowable to renumber the elements. Such renumbering is difficult to imple-
ment when the number of elements is large, but with only two elements the hardware is
trivial. For the tree-structured mismatch shaper, the s sequences are now chosen according
to

s[n]

0 x[n] even
1 x[n] odd and ss[n] 1
1 x[n] odd and ss[n] 1

r[n] x[n] odd and ss[n] 0

(6.10)

where ss[n] 1
0 s[i] and r[n] is a random bit taking on values of 1 with 50% proba-

bility. (Note that r , s, and ss are local to each switching block.) The reader can verify that
these rules imply the sum sequence ss is bounded by 1 in magnitude, namely ss[n] 1,
and thus we know that s is first-order shaped. More impressive is the fact that the PSD of
s has been proven to be smooth, and thus the mismatch noise is guaranteed to be devoid of
tones [12].

Figure 6.23 confirms this amazing property, but also indicates the price is a 6-dB
SNR degradation compared to the similarly-effective Bi-DWA scheme. The logic that
implements a switching block operating according to (6.10) is depicted in Figure 6.24
[11].
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Figure 6.23 First-order tree-structured mismatch-shaping, with dither.
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Figure 6.24 Logic implementing a dithered switching block.
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6.5 High-Order Mismatch-Shaping

Having seen several ways to first-order shape mismatch-induced noise, the reader may
wonder if high-order shaping is also possible. This section shows that high-order shaping
of mismatch is indeed possible, but is subject to stability constraints that are at least as
severe as those associated with binary modulation.

6.5.1 Vector-Based Mismatch-Shaping

VQ

MTF 1

SU
SY

F SE SV

SV
M M

SY

M

Figure 6.25 Vector-based mismatch-shaping.

Figure 6.25 depicts a system that is able to shape mismatch via an arbitrary transfer
function MTF(z) [13]. This system consists of M identical filters whose M outputs are
quantized to M 1-bit signals s that are in turn fed back to the M filters. Since each loop
is an error-feedback modulator with a common input SU, theory tells us that

SV(z) SU(z) MTF(z)SE(z) (6.11)

where the bold font denotes signals that are (row) vectors. We require the M-input quan-
tizer, hereafter called the vector quantizer (VQ), to obey

sv[n] [1 1 1]
1

s [n] [n] (6.12)

where denotes the dot product, so that the nominal output of the DAC is . (This con-
straint is indicated diagrammatically in Figure 6.25 by the input to VQ.) As before, we
can assume without loss of generality that the average element value is unity. Thus, the
DAC output is

D(z) SV(z) ([1 1 1] ee) (6.13)

where ee, the element error vector, contains the deviation of individual elements from
their average and thus satisfies

ee [1 1 1] 0 (6.14)

Now, by virtue of (6.12)
SV(z) [1 1 1] V (z) (6.15)

sv[ ] [1 1 1] sv[ ][1 1 1]
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while from (6.11) and (6.14),

SV(z) ee SU (z)([1 1 1] ee) MTF(z)(SE(z) ee)
MTF(z)(SE(z) ee) (6.16)

Thus, the DAC output is given by

D(z) V (z) MTF(z)(SE(z) ee) (6.17)

which shows that the output of the DAC consists of the desired signal plus a term shaped
by MTF(z). As long as we can ensure that se is bounded, element errors will therefore
result in noise that is shaped by MTF(z).

To maximize the likelihood that se is bounded, the scheme used to quantize sy to sv
subject to (6.12) is chosen to minimize the instantaneous se signal. Specifically, the [n]
elements in sv[n] that correspond to the largest values of sy[n] are set to 1 and the other
elements are set to 0. To remove commonality in the components of sy, su[n] can be set
to the negative of the smallest value of f [n] so that sy[n] consists of positive numbers and
at least one zero. This choice is quite arbitrary; other choices such as the negative of the
average value of f [n] would also serve the purpose of removing commonality.

To make the discussion above more concrete, let’s work through the operation of
the element selection logic for MTF(z) 1 z 1 with an 8-element DAC driven by the
sequence [n] 1 1 2 3 4 and starting from sy[0] [0 0 0 0 0 0 0 0] To simplify the
discussion, we will assume for the moment that su is zero.

Since all the components of sy[0] are equal, there is no preference for choosing one
element over another. Therefore, to satisfy s [0] [0] 1, we choose the first
element:

sv[0] [1 0 0 0 0 0 0 0] (6.18)

Since MTF(z) 1 z 1, the recursion equation with su 0 is

sy[n 1] se[n] sy[n] sv[n] (6.19)

and thus
sy[1] [ 1 0 0 0 0 0 0 0 ] (6.20)

With [1] 1 we are again faced with ambiguity regarding which element among
elements 2 to 8 to select, and so we choose the first of those elements:

sv[1] [0 1 0 0 0 0 0 0] (6.21)

Continuing in this vein, we find

sy[2] [ 1 1 0 0 0 0 0 0 ]
sv[2] [ 0 0 1 1 0 0 0 0 ]
sy[3] [ 1 1 1 1 0 0 0 0 ]
sv[3] [ 0 0 0 0 1 1 1 0 ]
sy[4] [ 1 1 1 1 1 1 1 0 ]
sv[4] [ 1 1 1 0 0 0 0 1 ]

demonstrating that the resulting usage pattern is identical to element rotation. As is also
apparent in this example, choosing su as the negative of the minimum of sy keeps all
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components of sy positive and prevents them from growing in magnitude together. In fact,
with MTF(z) 1 z 1, the components of sy are either 0 or 1, implying that a single bit
is sufficient for these signals.

Let’s now use (6.17) to estimate the in-band mismatch noise. Each of the M compo-
nents of se is the quantization error sequence of a 1-bit modulator. In the current context,
the quantization levels are 0 and 1. If we assume that the quantization error is uniformly
distributed in [ 0 5 0 5], then the quantization error power is 1 12. If we further assume
that these error sequences are white and uncorrelated with each other, then the power of the
(SE(z) ee) term is M 2 12. Following the derivation for (6.8), the in-band mismatch
power relative to the power of a full-scale sine wave is therefore

MNP
M 2

12

2 3
OSR3

8
M2

2 2 2

9M (OSR)3 82 dBFS (6.22)

This estimate is 6 dB closer to the simulated value of 90 dBFS than the estimate of (6.8).
However, since the estimate is high by 8 dB, simulation is still recommended to quantify
the effectiveness of the rotation scheme.

In addition to showing how element rotation can be derived, the preceding example
also suggests a benign way to add dither to the element selection process. Simply adding
a random value to each component of sy allows ties between elements to be broken in
a random way. Unfortunately, when this scheme, or high-order MTFs, are used, the ele-
ment usage pattern typically becomes indecipherable, and thus the structure illustrated in
Figure 6.25 needs to be implemented explicitly.

The most complex block in this system is the vector quantizer. The toolbox func-
tion simulateMS (described on page 514) uses a sort operation to determine element
priority. Sorting is a standard software operation, but a hardware sort can be prohibitively
complex. The hardware becomes more manageable with partial sort [14]. As an alternative
to sorting, the selection of the [n] largest components of sy[n] can be achieved by finding
the threshold r[n] that yields [n] ones from M digital comparisons between r[n] and the
components of sy[n]. This method avoids the sorting operation but requires iteration to
find r[n].

Since the ESL effectively consists of M 1-bit modulator loops with extra con-
straints on the one-bit quantizers, the stability of the ESL is typically worse than a plain
one-bit modulator. Thus, when high-order mismatch-shaping is desired, it is wise to
take precautions such as restricting the DAC input to a fraction of the DAC full-scale (for
example, by augmenting the DAC with extra elements), as well as implementing saturation
and reset logic.

To demonstrate the effectiveness of high-order mismatch-shaping, we in Figure 6.26
show the expected performance of our example 16-element DAC with 1% element varia-
tion when a second-order MTF with MTF 1 5 and zeros optimized for OSR 16 is
employed. We find that the SNDR is 4 dB higher than rotation and the spectrum appears to
be free of spurs. At higher OSR, high-order mismatch-shaping gives increased noise sup-
pression relative to first-order shaping, but at lower OSR the improvement is negligible.

The authors thank Nan Sun for suggesting this improved method.
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Figure 6.26 Example second-order mismatch-shaping usage pattern and spectrum.

6.5.2 Tree Structure

High-order mismatch-shaping can be accomplished with the tree structure of Figure 6.19
if, as before, the s [n] signal of Figure 6.20 satisfies the constraint that the division by
two results in a nonnegative integer less than 2 1 and also satisfies

S (z) MTF(z)E (z) (6.23)

where MTF(z) is the desired mismatch transfer function and e [n] is a bounded sequence.

1
1 1

1
4

1
2

midrise/midtread
quantizer

( 2)

1

1 1 limiter s [n]

LSB of x [n]

Figure 6.27 Second-order switching sequence generator.

As with the vector style, an s signal can be generated by a digital modulator
containing a modified quantizer. For example, Figure 6.27 shows a second-order modulator
whose quantizer generates even values if x[n] is even, and odd values if x[n] is odd. To
ensure the switching block’s outputs are in the range [0 2 1], the values of s are further
restricted to the range [ L L] where L min(x[n] 2 1 x[n]). If we assume that the gain
of the quantizer is unity, then the mismatch transfer function implemented by this structure
is

MTF(z)
(z 1)2

z2 1 25z 0 5
(6.24)

which has MTF 1 5.

Figure 6.28 confirms the second-order shaping of mismatch, but unfortunately the
SNDR is disappointingly low.
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Figure 6.28 Example usage pattern and spectrum for second-order tree-structured mismatch-
shaping.
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Figure 6.29 Simulated in-band mismatch noise power (MNP) vs. signal level. (OSR 16.)
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To gain perspective, Figure 6.29 compares the simulated in-band mismatch noise
power (MNP) as a function of signal level for three styles of mismatch-shaping. For
rotation, we find that MNP tends to decrease as the signal level increases, whereas for
both second-order mismatch shapers MNP increases sharply above a critical signal level
( 6 dBFS for the tree structure, 1 dBFS for the vector-based shaper). Our choice to use
a 3-dBFS input level for the preceding comparisons therefore shows the second-order
tree structure in an unduly unfavorable light. If we consider low signal levels, MNP with
the second-order tree-structured mismatch-shaper is actually a few dB lower than with
rotation. The vector-based shaper exhibits a further 5-dB advantage. Much of the differ-
ence between the two second-order shapers is due to the difference in their MTFs, but the
vector-based approach appears to fare slightly better even when identical MTFs are used.
We remind the reader that MNP improves with increased OSR at the rate of 15 dB per oc-
tave for both second-order shapers, whereas for rotation the rate of improvement is only
9 dB per octave. Thus, both second-order shapers are especially attractive when OSR 16.

6.6 Generalizations

The focus thus far has been on DACs constructed with M nominally equal one-bit DAC
elements. This section briefly describes two generalizations of mismatch-shaping, namely
the use of tri-level and non-unit elements.

6.6.1 Tri-Level Elements
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Figure 6.30 Tri-level DAC and tri-level mismatch-shaping.
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Consider a tri-level DAC element that produces levels 1, 0, and 1 in response to
the one-hot control signals n, z, and p, respectively, using a structure such as that depicted
in Figure 6.30(a). Such tri-level elements are useful for two reasons. First, the spacing
of the quantization levels in a quantizer that uses tri-level elements is half of what can be
achieved with two-level elements (i.e., 1 vs. 2), and thus, for the same number of
DAC elements, the quantization noise is reduced by 6 dB. Second, and more fundamental,
is the fact that the thermal noise of a tri-level element is zero when the z signal is active.

To combine the benefits of tri-level elements and mismatch-shaping, the arrangement
of Figure 6.30(b) can be used [15]. In this system, positive data is encoded as an M-bit
thermometer code p with n 0, and vice-versa for negative data. The p and n data are
shuffled to produce the P and N data that drive the DAC elements; each bit in z is produced
by NORing the corresponding n and p bits.

6.6.2 Non-Unit Elements

DAC1

DAC2

1

128:16:128

16:16

analog
outputMOD1

128:128

2

Figure 6.31 Segmented scrambling.

When M is large, the amount of digital hardware in the element selection logic is also
large. Hardware requirements can be reduced by using the segmented scrambling tech-
nique [8]. The concept is illustrated in Figure 6.31 for a 257-level DAC whose output is
constructed with 16 elements of weight 16 (DAC1) and 32 elements of weight 1 (DAC2).
The incoming data V is decomposed into V V1 V2, where V1 is quantized to multiples of
16 by a first-order modulator (MOD1), and V2 is the difference between the input and
output of MOD1. The properties of MOD1 guarantee V2 16 for V [ 128 128] and
thus the 32-element DAC2 has sufficient range to convert V2 into analog form. Employ-
ing mismatch-shaping in DAC1 and DAC2 shapes intra-DAC mismatch. Since inter-DAC
mismatch makes the output of the system proportional to V1 (1 )V2 V V2, and
since V2 (1 z 1)E1, where E1 is MOD1’s quantization error, inter-DAC mismatch is
also shaped.

The segmented scrambling technique can be applied recursively. For example, [16]
takes this approach to the extreme with a fully-segmented DAC using 14 levels of recursion
to shape the mismatch of 28 elements whose weights are 213 213 212 212 2 2 1 1
This DAC is able to construct 214 levels using only 28 elements. However, since the
total element weight is 215, the usable output range is only half of the theoretically
available range. Other modifications, such as the use of dithering (especially in the primary
modulator), or the use of higher-order modulation, can be applied provided the range of
the secondary DAC(s) is increased appropriately.
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Table 6.1 Output waveforms of a 1-bit DAC and its model.

[n 1] [n] DAC output Model output
1 1 LL 0 1 2
1 1 LH 0 1 2
1 1 HH 0 1 2
1 1 HL 0 1 2

6.7 Transition-Error Shaping

Thus far we have been concerned with DAC errors that afflict both discrete-time (DT) and
continuous-time (CT) DACs. In this section we consider errors resulting from nonlinear
transition dynamics. Such errors can be of critical importance in CT DACs but are irrel-
evant in DT DACs whose outputs settle fully each clock period. We start by developing
a model of transition error and then proceed to show how this error can be shaped using
extensions of the techniques described earlier.

1

z 1

2

0

out

x

DT CT

(b)(a)

clk

out

LH HH HL LL

Figure 6.32 Waveforms in a 1-bit CT DAC and associated signal-processing model. (Note that
denotes convolution in the model.)

Figure 6.32(a) defines LH (t), HH (t), HL(t), and LL(t) as the output waveforms

of a 1-bit DAC in response to low-high, high-high, etc., input data. These waveforms are
functions of time that span one clock period. If the internal nodes of the DAC settle by
the end of each clock period, then the output of the DAC can be constructed by stitching
together the LH (t), HH (t), etc., waveforms and thus these waveforms provide a com-
plete, albeit potentially nonlinear, description of the DAC. As the first step in quantifying
the nonlinearity, Figure 6.32(b) shows a model of a 1-bit CT DAC whose four waveform
parameters ( 0(t), 1(t), 2(t) and (t)) will be selected such that the model produces
the correct output waveform in response to the input data.

Table 6.1 tabulates the DAC and model outputs in response to the four possible one-bit
input pairs. In keeping with the conventions used in the earlier chapters, the input alphabet

The model of Figure 6.32(b) can be derived by performing a least-squares fit of the linear model 0
1 [ ] 2 [ 1] to the LH , HH , HL and LL responses and then computing the residual actual lin.

We spare the reader these details by starting with the model and matching it to the waveforms.
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for the input is 1 1 . In order for the model output to match the actual DAC output,
we require

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

0
1
2

LL
LH
HH
HL

(6.25)

which can be inverted to yield the model waveforms in terms of the DAC waveforms

0
1
2

1
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

LL
LH
HH
HL

(6.26)

Having computed the model parameters in terms of the DAC’s output waveforms, we
are now in a position to discuss the nature of a CT DAC’s nonlinearity. First note that the
DAC model is linear in the mathematical sense except for two terms, specifically 0 and

. The 0 term, which is analogous to a dc offset in the DT case, creates spurs at dc and
at multiples of the clock frequency. Such offset and clock feed-through terms can usually
be ignored since they do not corrupt the information-bearing components of the signal.
The term is the more problematic nonlinear term. In order for the DAC to be linear, we
require 0, which, from the last row of (6.26), is equivalent to the requirement

LL HH LH HL (6.27)

One interpretation of this result is that a linear CT DAC must obey the principle of super-
position. Another useful insight from (6.27) is that a balanced differential DAC is auto-
matically linear because in such a DAC LL HH and LH HL. Important sources
of imbalance in a differential current-mode DAC include V mismatch in the switches and
mismatched delay in the switch control signals. The job of the DAC designer is therefore
to design DAC circuits that make these error sources sufficiently small.

The spectrum of the nonlinear component of the DAC’s output is obtained by con-
volving (t) with the discrete-time sequence

x[n] [n] [n 1] (6.28)

Since x[n] is 1 if the DAC does not switch and 1 if the DAC does switch, the x sequence
reflects the occurrence of switching events, or transitions. We therefore refer to the error
obtained by convolving x with as the transition error. Since convolution in the time
domain is multiplication in the frequency domain, the spectrum of the transition error
is equal to the spectrum of the x sequence multiplied by the Fourier transform of .
Transition error can therefore be shaped by shaping the x sequence.

The arrangement shown in Figure 6.33 can be used to shape the x sequences of a
multi-element DAC. As with vector-based mismatch-shaping, all the labeled signals ex-
cept are M-element vectors, and the vector quantizer obeys s . This system
can be divided into a linear loop filter and a nonlinear “quantizer” as indicated by the
dashed boxes. With this partitioning, we can recognize the system as M implementations
of MOD1 with inputs xu and outputs x , but containing a peculiar quantizer. If the loop
is stable, theory tells us that with a constant input xu, the output x contains a dc
term equal to xu plus first-order shaped noise. Since x is a vector of the transition (x)
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Figure 6.33 Element selection logic for first-order transition-error shaping.

sequences, we conclude that transition error is first-order shaped. To verify the plausibil-
ity of stable operation, note that if x is high (indicating that there have been too many
transitions for element i), then the associated comparator is biased towards making the
associated bit stay the same.

As with vector-based mismatch-shaping, the stability of this transition-error-shaping
loop depends on the shaping function and on the input data . However, in contrast with
vector-based mismatch-shaping, the xu input also affects the stability of the loop, and,
unlike the time-varying scalar su signal in vector-based mismatch-shaping, xu is a vector
and must be constant. The choice of an appropriate value for xu is an open problem. Using
xu 0 sets the target transition rate to 50%, which is not supportable when is near the
ends of its [ M M ] range since only a few elements can switch. On the one hand, the
problem is worse when xu is negative because such a setting increases the target switching
rate. On the other hand, making xu positive decreases the target switching rate but makes
it difficult for the system to track a fast-changing signal.

0 5 10 15 20
0

5

10

15

Time
10

−3
10

−2
10

−1
−140

−120

−100

−80

−60

−40

−20

0

NBW = 9.2x10−5 

Normalized Frequency

 

 
Therm.
XS

Figure 6.34 Example usage pattern for first-order transition-error shaping (XS) and comparison of
transition vector spectra. ( 3-dBFS input, xu 0 7.)

Figure 6.34 depicts simulation results for xu 0 7 when the input is a 3-dBFS low-
frequency ( f 0 002) sine wave. The element usage plot shows that the large positive
value of xu results in a blotchy usage pattern, which is expected since the average number
of elements that switch per cycle is a relatively small value, namely M (1 xu) 2 2 4.
The spectrum indicates that transition error is shaped. The most encouraging aspect of
this simulation is that the second-harmonic is attenuated by more than 30 dB compared to
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plain thermometer coding. Since further simulations indicate that the system tolerates 3-
dBFS inputs up to f 0 1, our choice of xu 0 7 appears to be reasonable. On the less
encouraging side, the frequency at which the shaped transition error crosses the unshaped
error is f 0 03, so transition-error shaping offers little benefit for OSR 16; also the
large spur energy in the vicinity of f 0 07 is worrisome.

VQ

z 1

1

MTF 1

s

x

s

XTF 1

su

xu

x

Mismatch-shaping loop

Transition-error shaping loop

Figure 6.35 Combined mismatch-shaping and transition-error shaping.

As a final example of a mismatch-shaping system at the forefront of technology, Fig-
ure 6.35 depicts a system that combines both mismatch-shaping and transition-error shap-
ing [17]. In this system, the output of the mismatch-shaping loop and the output of the
transition-error-shaping loop are added with weights and (1 ), respectively. The
designer selects according to the relative magnitude of the two error sources.
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Figure 6.36 Simulated performance of combined mismatch- and transition-error shaping. ( 0 5;
xu 0 5; 3-dBFS input at f 0 002.)

To demonstrate that this arrangement is workable, Figure 6.36 plots the usage pattern
along with spectra of the sv and xv signals for a system combining first-order transition-
error shaping with second-order mismatch-shaping. Since xu is positive, the usage pattern
again has a blotchy appearance, but now both the spectra of the selection vector and the
transition vector are shaped.
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6.8 Conclusions

In this chapter we examined a variety of techniques for enhancing the linearity of a multi-
bit DAC consisting of M one-bit DAC elements. An important feature of these mismatch-
shaping schemes is that they operate without knowledge of the actual element errors. We
found that choosing the elements randomly turns the errors caused by static element mis-
match into white noise, whereas selecting the elements in a rotational fashion accomplishes
first-order shaping. Using the Bi-DWA or the dithered tree-structure variants of first-order
mismatch-shaping was found to reduce or eliminate tones, respectively, at the expense of
mismatch suppression. We showed that high-order shaping is possible with more complex
hardware containing multiple modified loops.

In addition to static element mismatch, we also discussed the dynamics of a one-
bit CT DAC, and saw that transition error can also be shaped. Simultaneous shaping of
transition error and mismatch error can be accomplished by combining a mismatch-shaping
loop with a transition-error-shaping loop. Transition-error shaping is in its infancy and the
ambitious reader is encouraged to develop it further. For a recent review of such techniques,
and for a more extensive set of references, consult [18].

The Toolbox contains several functions related to element selection: ds_therm
(thermometer-coded selection), simulateMS (vector-based mismatch-shaping, including
rotation), simulateSwap (butterfly shuffler), simulateTSMS (tree-structured shaper),
simulateBiDWA (bi-directional data-weighted-averaging), simulateXS (transition-error
shaping), and simulateMXS (combined mismatch- and transition-error shaping).
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CHAPTER 7

CIRCUIT DESIGN FOR DISCRETE-TIME
DELTA-SIGMA ADCS

This chapter examines circuits for switched-capacitor ADCs. A simple low-speed 1-
bit second-order modulator is used to illustrate the primary design considerations. More
advanced circuits, techniques, and analyses follow.

7.1 SCMOD2: A Second-Order Switched-Capacitor ADC

To implement MOD2, whose standard block diagram is given below in Figure 7.1, we need
circuits that do integration, summation, 1-bit quantization and 1-bit feedback. Before we
learn how to make such circuits, let us pick some target ADC specifications.

u 1
1 1

1

1 1

Figure 7.1 Standard MOD2 block diagram.

Table 7.1 lists our proposed targets. An ADC having a bandwidth of 1 kHz could be
used as an on-chip voltage monitor or as part of a low-speed calibration engine. Since
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choosing a clock rate of 1 MHz yields an oversampling ratio of 500, the SQNR available
from a second-order modulator is about 120 dB, and thus a 100-dB SNR target is quite
feasible. To ease the circuit design, we will use a 1.8-V supply. Although the core supply
voltage of current nanometer CMOS processes is 1.0 V or lower, most such technologies
support 1.8-V devices operating from the IO supply. For this reason, the circuits of this
design example are practical even in modern CMOS processes.

Table 7.1 Specifications for SCMOD2.

Parameter Symbol Value Units
Bandwidth f 1 kHz

Sampling frequency f 1 MHz
Signal-to-Noise Ratio SNR 100 dB

Supply voltage V 1.8 V

7.2 High-Level Design

7.2.1 NTF Selection

Figure 7.2 Simulated SQNR versus input amplitude.

The standard version of MOD2 having NTF (z) (1 z 1)2 is in common use, but we
recommend using a less aggressive NTF so that the modulator is more well-behaved when
the input is close to full-scale. The code fragment below creates an NTF and evaluates
its performance using an SQNR versus amplitude curve (Figure 7.2). Since the ideal peak
SQNR is 120 dB, quantization noise is 20 dB below our target noise level. This margin is
at the generous end of the 10–20 dB range that typically separates the ideal SQNR from
the target SNR.

It is common for a CMOS IC to have a secondary supply, the IO (input/output) supply, that is used to interface
to other ICs. Analog designers often take advantage of the IO supply.
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% Create a second-order NTF
order = 2;
osr = 500;
M = 1;
ntf = synthesizeNTF(order,osr);
% Plot the SQNR vs. amplitude curve
[sqnr, amp] = simulateSNR(ntf,osr,[],[],M+1);
plot(amp,sqnr,’-o’,’Linewidth’,1);
...

7.2.2 Realization and Dynamic-Range Scaling

When converting a block diagram into a circuit, we need to ensure that the signal magni-
tude at each node is within the range of the amplifier driving that node. Unfortunately, the
block diagram in Figure 7.1 provides no information regarding the signal swing at the inte-
grator outputs. Even if we had this information, we have done nothing to ensure that these
swings are compatible with our circuits. To remedy this omission, we need to determine
the swing of each integrator output, and then scale each stage such that its output is within
the anticipated range of our opamps.

z 1
2

1

2

1

x
z 12

1

k 2

k 1

x k

Figure 7.3 State scaling.

As described in Section 4.7.1 and illustrated in Figure 7.3, to scale a particular state
(x) down by a factor of k, simply divide all incoming coefficients by k and multiply all
outgoing coefficients by k.

The code fragment below realizes the aforementioned NTF with a CIFB topology and
performs dynamic range scaling as described above using the functions of the toolbox
(Appendix B). Figure 7.4 shows the associated block diagram. In this diagram, all co-

z 1b1
x1[n]

a1

z 1c1

a2

c2 [n]u[n]
x2[n]

Figure 7.4 Second-order CIFB modulator.

efficients except c2 will translate into capacitor ratios. The c2 coefficient turns out to be
immaterial, since a 1-bit quantizer only cares about the sign of its input, and c2 is positive.
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...
form = ’CIFB’;
swing = 0.5; %Amplifier output swing, Vp
umax = 0.9*M; %Scale system for inputs up to 0.9 of full-scale
[a,g,b,c] = realizeNTF(ntf,form);
b(2:end) = 0;
ABCD = stuffABCD(a,g,b,c,form);
ABCD = scaleABCD(ABCD,M+1,[],swing,[],umax);
[a,g,b,c] = mapABCD(ABCD,form);
% Yields a = [0.1131 0.1829]; b = 0.1131; c=[0.4517 4.2369]

7.3 Switched-Capacitor Integrator

−

+2

C1
1 :
2 :1

21

C2

Figure 7.5 Switched-capacitor integrator.

Figure 7.5 depicts our first building block: a switched-capacitor (SC) integrator. In
this circuit, each clock period is divided into two phases and the circuit toggles between
the two configurations defined by the phase switches. During phase 1, the switches la-
beled “1” are on and the switches labeled “2” are off. During phase 2, the reverse is true.
Furthermore, no phase-1 switch is on at the same time as a phase-2 switch.

+
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+

−

+

[n]

C1q1[n] C1 [n]

C2 q2[n]

[n]
q2[n]
C2
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C1

C2 q2[n 1] q2[n] q1[n]

[n 1] [n]
C1
C2

[n]

Phase 2:

q 0
q1[n]

Figure 7.6 Phase 1 and phase 2 configurations of the integrator.
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To understand how this circuit works, consider the two configurations depicted in
Figure 7.6. During phase 1, C1 is charged to the input voltage [n] and C2 holds whatever
charge it had during the preceding phase 2. During phase 2, C1 is connected to ground on
the left side and to virtual ground on the right. If the gain of the opamp is infinite, then
the charge on C1 is driven to zero. By virtue of the circuit’s topology, however, the charge
from C1 must accumulate on C2, and thus

q2[n 1] q2[n] q1[n] (7.1)

Taking the z-transform of (7.1) yields

Q2(z)
Q1(z)

z 1

1 z 1 (7.2)

Since Q1(z) C1V (z) and Q2(z) C2V (z), we conclude that the circuit in Figure 7.5
implements a delaying integrator with a scale factor C1 C2:

V (z)
V (z)

C1
C2

z 1

1 z 1 (7.3)

The circuit in Figure 7.5 is often described as being parasitic-insensitive, since para-
sitic capacitances from the switch nodes to ground do not affect the transfer function. To
understand this property, first consider a parasitic capacitance from the left side of C1 to
ground. This parasitic capacitor is charged to on phase 1 and then discharged to ground
on phase 2. Although this sounds similar to what happens with C1, the discharge path is
only through the phase-2 switch, and therefore none of the charge on this parasitic capaci-
tor is transferred to C2. Thus, parasitic capacitance on the left side of C1 does not alter the
integrator’s transfer function.

Next consider a parasitic capacitor from the right side of C1 to ground. The top of this
capacitor is alternately connected to ground and then to virtual ground. As a result, this
parasitic capacitor never holds any charge and so plays no role in the integrator’s transfer
function. By following similar reasoning with other nodes in the circuit, the reader can
verify that parasitic capacitance from any node to ground does not alter (7.3).

Let’s now advance to the circuit shown in Figure 7.7. This circuit consists of two
switched-capacitor branches connected to the same amplifier. By applying the principle of
superposition to this circuit, we quickly arrive at the relation

V (z)
C1
C

V1(z)
C2
C

V2(z)
z 1

1 z 1 (7.4)

The circuit in Figure 7.7 therefore implements both summation and integration. In
fact, by connecting 2 to Vref when [n] is 1 and to Vref when [n] is 1, the second
branch implements a one-bit feedback DAC with the polarity called for in Figure 7.1.
The circuit in Figure 7.7 thus implements all the functions needed in MOD2, except for
quantization!

Figure 7.8 shows a candidate switched-capacitor topology and its associated timing
diagram alongside the difference equations for Figure 7.4. (The dashed lines connecting
to switches represent 1-bit DACs, i.e., a pair of switches connected to Vref and controlled
by .) The first difference equation indicates that [n] depends on x2[n], which is consistent
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Figure 7.7 SC integrator with two inputs.

Figure 7.8 Candidate topology for MOD2 and associated timing check.
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with both the schematic and the timing diagram since x2[n] is available at the end of phase
2 and [n] is produced by the comparator on the falling edge of the phase-2 clock. The next
equation shows that x2[n 1] depends on both x1[n] and [n], which is again consistent
with the schematic and timing diagram since, as illustrated, [n] is available on the next
phase 1 and x1[n] was sampled on the preceding phase 2. Finally, we see that x1[n 1]
depends on [n], which is again consistent with the circuit and the timing diagram, since
x1[n 1] is produced on phase 2 when [n] is present. (The dependence of x1[n 1] on
u[n] is not important since u is only connected to the first integrator and so we are free to
assign arbitrary timing labels to the u waveform.)

7.3.1 Integrator Variations

2 1

1 2C2 C

i
x1

refn

x1

C

1

1 2C2

refp

1
refp

refn
1

C1
u

1 2

C1

u
1 2

u

2

u

Figure 7.9 Differential integrator with separate input and DAC capacitors.

Figure 7.9 shows a differential version of the combined integrator, summer, and feed-
back DAC. This diagram shows three different common-mode nodes driven by voltages
i , u , and . These voltages represent degrees of freedom for the designer. For

This methodology deviates from standard practice in the design of switched-capacitor filters. In the standard
methodology, the designer chooses the end of either phase 1 or phase 2 as the dividing line between time and
time 1, and then handles the circuit using -domain descriptions of each block. The circuit of Figure 7.8
presents two challenges to the standard methodology. First, since there is no time when [ ] and 2[ ] are both
present, we cannot make a consistent division between time and time 1. Second, the -domain description
of a block is not unique. For example, if we choose the end of phase 2 as the dividing line between time and
time 1, then the second integrator is described with a delaying transfer function, whereas if we choose the end
of phase 1 as the dividing line between time and time 1, then the transfer function is non-delaying. In fact,
an integrator may be considered delaying for one input and non-delaying for another input. For these reasons, we
have chosen to abandon the standard methodology and instead verify the difference equations directly.
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example, i is the input common-mode voltage of the amplifier, and the designer is free
to choose this voltage based on the needs of the amplifier. Likewise, u is the common-
mode voltage of the input signal u and is the common-mode voltage of the reference
voltage. These two voltages have no effect on the operation of the circuit provided

u (u u ) 2 (7.5)

and
( refp refn) 2 (7.6)

Mismatch between the voltage supplied at u and the actual common-mode voltage of
the input, or between the voltage supplied at and the actual common-mode voltage of
the reference, introduces a common-mode error at the input of the amplifier. The designer
should ensure that the amplifier has enough input common-mode range to accommodate
such errors.

Next, observe that the opamp in a switched-capacitor circuit only drives capacitors.
Thus, as the circuit settles in response to a phase change, the opamp’s output current decays
to zero. This property allows the opamp to have an arbitrarily large output resistance, and
thus a simple transconductance with a high output resistance makes a perfectly serviceable
high-gain opamp for a switched-capacitor circuit. The acronym applied to this kind of
amplifier is OTA, which stands for operational transconductance amplifier.

2 1

1 2
u

C1 C

i
x1

2
refp

x1

C

2 1

1 2
u

C1

2
refn

Figure 7.10 Differential integrator with shared input and DAC capacitors.

Figure 7.10 shows a simplified version of the preceding integrator in which the same
capacitors are used for sampling the input (on phase 1) and applying feedback (on phase 2).
This arrangement has 3 dB lower noise than the circuit in Figure 7.9 (noise is discussed
in Section 7.18) but requires the input full-scale voltage to equal the reference voltage and
is also susceptible to mismatch in their common-mode voltages.

Figure 7.11 shows an integrator that also uses the same capacitors for the feedback
DAC as are used to sample the input, but accepts a single-ended input. Furthermore, this
circuit uses Vref V . Since one of the applications envisioned for our ADC is a voltage
monitor, a single-ended input with a range of [V V ] seems like a perfect fit. For this
reason, we would like to adopt this topology for the first integrator.

In practice, using the supply voltage as the reference requires heavy filtering to achieve high conversion accuracy
in the face of supply noise. A suitable circuit utilizing a two-step coarse/fine charging scheme and an external
capacitor to effectively filter the supply voltage with a 2-Hz lowpass filter is described in [1].



SWITCHED-CAPACITOR INTEGRATOR 173

1

2 2
V

C1 C2

i
x1

x1

C2

2

1

1 2
V

C1

1
u

2
1

V

V

Figure 7.11 Differential integrator with single-ended-to-differential conversion.

However, some care must be taken at this point since the circuit in Figure 7.11 uses
slightly different timing than was assumed in Figure 7.8. In particular, Figure 7.8 shows
[n] being fed back to the first integrator during phase 2, whereas in Figure 7.11 [n] is

sampled on both phase 2 and the preceding phase 1. Fortunately, as indicated in the timing
diagram of Figure 7.8, [n] is available at both times, and thus we are able to use the circuit
in Figure 7.11 as the first integrator in our system. As an aside, we note that the situation
would not have worked out so well if we had chosen the CRFB topology.
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Figure 7.12 Second integrator in SCMOD2.

Figure 7.12 shows a version of Figure 7.9 in which the input common-mode and
reference common-mode switches have been replaced with differential shorting switches.
This simple connection automatically finds the required common-mode voltage, and since
one switch replaces two, the resistance of the switch can be double that of the two original
switches. Since this circuit decouples the input and feedback weightings, and since the
second integrator in our example modulator uses the unrelated coefficients a2 and c1, we
will use this circuit for the second integrator.

Figure 7.13 shows an integrator in which the DAC capacitors are neither shorted to-
gether nor connected to during phase 2. Instead, the DAC capacitors are connected to
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Figure 7.13 Integrator with double-sampled references.

the opposite reference polarity. Doing so effectively doubles the reference voltage and so
results in lower noise than the circuit of Figure 7.9.
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Figure 7.14 Input voltage scaling and shifting.

As a finale for our foray into integrator variations, Figure 7.14 shows an input structure
that attenuates the input by 20% in order to prevent the modulator from being overloaded.
The price is a 2-dB SNR hit and a loss of dc accuracy since the Vfullscale Vref ratio now
depends on capacitor matching.

7.4 Capacitor Sizing

The capacitance ratio in the first stage can be computed using either

a1
C1Vref

C2

C1V

C2
(7.7)

or
b1

C1V

MC2

C1V

C2
(7.8)
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Since a1 b1, both calculations yield the same result.

The absolute value of C1 is determined by a thermal noise constraint. The mean-
square noise voltage yielding an SNR of 103 dB (100 dB plus 3 dB margin) relative to the
power of a full-scale (Vp V 2) sine wave is

2 (V 2)2 2
10SNR 10

(0 9)2 2
10(103 10) (4 5 V)2 (7.9)

The in-band input-referred mean-square noise voltage associated with the first integrator is
approximately

2 kT

OSR C1
(7.10)

Equating (7.9) to (7.10) yields C1 0 4 pF, and plugging this value into (7.8) gives C2
6 5 pF. We now have the capacitances needed in the first integrator.

The c1 coefficient specifies the weighting factor connecting the first integrator to the
second:

c1
C3
C5

(7.11)

And, similar to (7.7) for the a1 coefficient, a2 is related to the feedback capacitor C4 and
the 1-b DAC’s differential reference voltage ( V ) via

a2
C4V

C5
(7.12)

However, since the oversampling ratio is high, the in-band thermal noise of the second
integrator is so heavily attenuated by the gain of the first integrator that the second-stage
noise constraint is unimportant. Instead, we set the smallest capacitor (C4) to 10 fF and
compute the other capacitors using (7.11) and (7.12). Admittedly, 10 fF is an arbitrary
value. If the process supports smaller values with adequate accuracy, then choosing a
smaller capacitance would save some power, but as we will see, the savings are small. The
calculations for the capacitors are summarized in the code fragment below.

% Compute capacitor sizes
Vdd = 1.8;
Vref = Vdd;
FullScale = Vdd;
DR = 100 +3; % Dynamic range in dB, plus 3-dB margin
k = 1.38e-23; T = 300; kT = k*T;
% First stage values based on kT/C noise
v_n2 = (FullScale/2)^2/2 / undbp(DR); % = kT/(osr*C1)
C1 = kT/(osr*v_n2);
C2 = C_1/b(1)*FullScale/M;
% Second-stage values based on C4 = 10f

DAC coefficients, such as 1, include the DAC reference voltage, since the signal is unit-less whereas our
state-staling endowed the 1 signal with dimensions of volts. According to the conventions of the toolbox,
is also normalized to match , and thus the expression relating 1 (which multiplies ) to capacitor ratios includes
the full-scale voltage.
Section 7.18 shows that the noise of a differential integrator is approximately 4 1. The OSR factor appears

in (7.10) because we are interested in the in-band portion of the noise, and the factor of 4 disappears because the
circuit of Figure 7.11 does single-ended to differential conversion.
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C4 = 10e-15;
C5 = C4 * Vref / a(2);
C3 = C5 * c(1);
% Yields C1=410f, C2=6.49p, C3=44f, C4=10f, C5=98f

7.5 Initial Verification

SCMOD2

Figure 7.15 MOD2 schematic.

Having manually verified the viability of the chosen topology, we need to simulate
our schematic (Figure 7.15) to ensure that it implements the desired difference equations.
Since a modulator can be difficult to debug with closed-loop simulations, it is wise to
do open-loop simulations before closing the loop and verifying the modulator as a whole.

To verify the loop filter, we recommend checking that its impulse response matches
the expected response, which can be computed using the toolbox function impL1. To
perform this check on our circuit, we need to replace the quantizer with a block that sup-
plies an impulse 1 0 0 to the feedback path. Unfortunately, a single-bit DAC can
only accept values of 1. To overcome this limitation, we instead simulate the loop
filter twice, first with the DAC input sequence

1 1 1 1 1 1 1 (7.13)

and then with
2 1 1 1 1 1 1 (7.14)

Since the loop filter is linear, its response to an impulse ( ( 2 1) 2) is given by
subtracting the response due to 1 from the response due to 2 and then dividing by two.
Figure 7.16 compares the predicted responses with the results from this check. Since the
simulation results (solid lines) pass through the predicted points (marked by ), we can be
confident that the loop filter and feedback DAC are operating properly.

The first closed-loop check we recommend is a short transient simulation with a dc
input. Figure 7.17 shows the simulated input, output and internal signals over 40 clock
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Figure 7.17 Short transient simulation with a dc input.
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periods with a dc input at 90% of V . Note that the settled integrator outputs are within
the prescribed 0 5-V limits and that the running average of , scaled by V , approaches
the input signal. These observations increase our confidence that the circuit is behaving
as intended.
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Figure 7.18 Spectrum from a behavioral simulation.

The primary evidence that a modulator really works, however, is a closed-loop sim-
ulation with a sine-wave input. Since the OSR is so high, such a simulation needs to be
very long in order to accurately determine the modulator’s SQNR. A good practice is to
do a short simulation to verify that the modulator is stable and demonstrates noise-shaping
before running a long simulation, but in Figure 7.18 we present the results of the long (216

clock cycle) simulation only. Noise-shaping with the 40-dB/decade slope characteristic of
a second-order null is clearly evident. Also included in Figure 7.33 is the SQNR (114 dB)
and the level of the third harmonic (H3 105 dBFS) calculated from the simulation data.
The SQNR is 6 dB lower than that obtained from the toolbox, but is sufficiently high
to confirm that our simulation tolerances are adequate for observing an SQNR well above
100 dB. Similarly, the value of H3 indicates that distortion terms larger than 105 dBFS
are unlikely to be due to the simulation setup. Let’s now move on to some transistor-level
circuits.

7.6 Amplifier Design

Figure 7.19 depicts folded-cascode amplifiers having either NMOS or PMOS input pairs.
The folding connection between the output of the differential pair and the source of the
opposite-polarity cascodes provides a wide input common-mode range, while the cascoded
current sources in the output legs provide a high output impedance and hence high opamp
gain. Next we examine some design considerations for this circuit.

To support a differential output of 0 5 V peak, both o and o must be able to swing
over a 0.5-V range. Since the supply voltage is 1.8 V, this leaves 0.65 V for each of the
NMOS and PMOS cascoded current sources. To minimize the noise contributed by the

Since the input is unipolar, in this plot we interpret the two values of as 0 1 rather than 1 1 .
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Figure 7.19 Folded-cascode opamps: (a) NMOS input; (b) PMOS input.

current sources, most of this voltage (400 mV) will be allocated to the current sources,
leaving 250 mV for the cascode devices.
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Figure 7.20 Slew currents.

Our next consideration is slewing. Typically, at the start of each charge-transfer phase,
the amplifier input terminals are driven far enough apart that the current in the differential
pair switches fully to one side. As shown in Figure 7.20, the magnitude of the output
current under these conditions is I, where I is the bias current in each half of the differential
pair. (I is also assumed to be the standing current in the output cascodes.) Clearly, I

must be large enough to transfer the charge from the input capacitor(s) to the integrating
capacitor in the allotted time. Let’s allocate half of a clock phase (i.e., one quarter of a
clock period) for slewing. Since the voltage on the left side of the input capacitor C1 can
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change by as much as V 1 8 V, we therefore need

I
C1V

T 4
0 4 pF 1 8 V

0 25 s
3 A (7.15)
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Figure 7.21 Time-constant calculation.

Allocating half of a clock phase for slewing leaves the other half for ordinary linear
settling. Figure 7.21 shows the small-signal model of an integrator in the charge-transfer
phase and an equivalent circuit from which we immediately see that the time-constant is

RC
C1 C3 C1C3 C2 (7.16)

If we require linear settling to provide, say, 100 dB of attenuation of the initial condition,
then

T 4 ln(105) 12 (7.17)

which gives
C1 C3 C1C3 C2

T 48
20 A V (7.18)

Note that the value listed above is that associated with the amplifier half-circuit and
thus represents the transconductance of the individual transistors in the differential pair.
Since we have already established that the minimum drain current of these transistors is
I 3 A, the required I ratio of the input transistors is 20 3 7 V 1, which is well
within the practical range of a transistor biased in moderate inversion. Since simulations
of individual transistors in this process indicate that a I ratio as high as 18 V 1 can
be achieved, we could allow more time for slewing at the expense of linear settling and
thereby arrive at a more optimal current target. However, since it is still early in the design
phase, we will leave some slack in anticipation of some surprises.

7.6.1 Amplifier Gain

Our final amplifier consideration is amplifier gain. Figure 7.22 shows the steps used to
analyze the effects of finite amplifier gain on a switched-capacitor integrator. As in the
infinite-gain case, we start with phase 1. During phase 1, C1 charges to the input voltage
while C2 holds its charge q2[n]. However, now the voltage on the left side of C2 is [n] A
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Figure 7.22 Analysis of finite opamp gain.

while the voltage on the right side of C2 is [n]. Thus, the relationship between q2 and
is

q2 C2(1 1 A) (7.19)

In phase 2 a charge q flows as indicated, reducing the charge on C1 to

q1[n] q C1 [n 1] A (7.20)

whence
q q1[n] C1 [n 1] A (7.21)

This charge is added to C2, so that

q2[n 1] q2[n] q

q2[n] q1[n]
C1 [n 1]

A

q2[n] q1[n]
C1q2[n 1]
C2(A 1)

(7.22)

which implies that

q2[n 1]
q2[n] q1[n]

1
(7.23)

where
C1

C2(A 1)
(7.24)

Applying (7.19) to (7.23) and taking the z-transform yields

V (z)
V (z)

C1 C2

1 1 (1 )

1
z 1

1

(7.25)
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Figure 7.23 NTF zero shift.

From (7.25) we can see that finite amplifier gain has two effects: a small reduction
in the integrator’s gain constant and an inward shift of the integrator’s pole (z 1 ).
Since the change in the integrator’s gain constant is equivalent to a coefficient error, this
change typically has a negligible impact on the in-band attenuation provided by the NTF.
In contrast, the pole shift is more problematic because the integrator pole becomes an NTF
zero. As illustrated in Figure 7.23, a shift in an NTF zero reduces the NTF attenuation at
the passband edge by 3 dB when the shift is OSR. According to this argument, we
want the opamp gain to satisfy

A
OSR C1

C2
1 19 dB (7.26)

This gain requirement is remarkably lax. Unfortunately, it is predicated on two highly
optimistic assumptions. The first assumption is that it is sufficient to treat the modulator
as a purely linear system. Unfortunately, a low-order modulator such as ours is suscep-
tible to the nonlinear phenomenon of dead bands. As discussed in Section 3.3.1, a dead
band is a range of inputs that yield the same periodic output sequence and hence the same
post-decimation output. Usually the worst dead band is associated with the output pattern

1 1 . In our modulator with an input of zero, this feedback pattern produces a periodic
sequence x2 80 mV 80 mV at the output of the second integrator. Following the
methodology of Section 3.3.1, we find that with a small input, , the x2 sequence is shifted
up by A2 and the output sequence is therefore unchanged if

80 mV
A2 (7.27)

Since the output sequence has an average of zero, an input whose magnitude is or less
will be indistinguishable from an input of zero. In order to resolve, say, a 10 V input, we
would therefore need

A
80 mV
10 V

39 dB (7.28)

For the structure in Figure 7.4, the steady-state signal at 2 with 1 1 is ( 2 1 1 2) 2.
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The second and more pertinent assumption is that the opamp gain is constant. In
practice, an opamp’s gain varies with its input voltage and this variability causes distortion.
Behavioral modeling can be used to quantify the distortion resulting from a given gain
curve, but it is more direct, and usually easier, to rely on transistor-level simulations of the
amplifier in the context of the modulator.

We can nonetheless put an upper bound on the required gain by noting that fi-
nite amplifier gain causes incomplete charge transfer from the input capacitors. Since
the magnitude of the associated input-referred error signal is no more than A,
we know that the distortion of a signal near the stable limit (0.9 V 1 6 V in our
case) is less than 0 5 V A. If the amplifier gain stays above 80 dB, then, no matter
how nonlinear the amplifier is, we can be certain that all distortion terms are less than
0 5 V (1 6 V 10 80 20) 90 dBc.

Even if there is no explicit distortion requirement for the ADC, we need to ensure that
the loop filter is sufficiently linear that distorted out-of-band quantization noise does not
fill in the noise notch. As an estimate of the required linearity, observe in the spectrum of
Figure 7.18 that the out-of-band quantization noise density is above the in-band density by
nearly 90 dB, and thus distortion at the 90-dB level would have an appreciable effect on
the in-band noise.

Based on these considerations, we should aim for at least 80 dB of amplifier gain
and then follow up with modulator simulations to verify that the amplifier’s linearity is
adequate. It is important to reiterate that an estimate of the required amplifier gain based
on purely linear theory is woefully inadequate.

7.6.2 Candidate Amplifier
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Figure 7.24 Transistor sizes and bias points.
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Figure 7.24 shows the schematic of the amplifier intended for the first integrator, an-
notated with bias currents and selected node voltages. Transistors were sized to achieve
the target saturation voltages with 100 mV of margin at the slow/hot corner while the gate
areas of the input pair and the current source devices were made large enough that the 1 f

noise corner was below 100 Hz. The total current consumption of this amplifier is 12 A.

V

i i

cmfb
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1

1

2

2
bias1
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2 2

1

1
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2
bias1

Figure 7.25 Switched-capacitor common-mode feedback.

When an amplifier of this kind is used within a modulator, common-mode feedback
(CMFB) is typically provided by the switched-capacitor network shown in Figure 7.25. In
this circuit, the switched capacitors set the dc voltage on the main CMFB capacitors and
the high gain of the CMFB path ensures that the common-mode of the output is regulated
to within a fraction of a mV. However, since this network takes a few clock cycles to
settle, we advocate doing ac simulations using the ideal common-mode feedback depicted
in Figure 7.26 to check the gain and stability of the amplifier.

o

o

o

o

o

o

Figure 7.26 Ideal common-mode feedback.

Figure 7.27 plots the gain of the amplifier versus the differential output voltage in
both the nominal case and the slow-hot corner. In the nominal case, the amplifier gain is
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Figure 7.27 Amplifier gain versus output voltage.

greater than 83 dB for V 0 5 V, whereas in the slow-hot corner the minimum gain
over this output range is about 5 dB lower.
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Figure 7.28 Amplifier gain and phase with a 0.5-pF load.

Figure 7.28 shows Bode plots of the amplifier with an output load capacitance of
0.5 pF. The unity-gain frequency (UGF) of 10 MHz provides 2 (10 MHz) (1 MHz 4)
16 time constants of settling in a quarter-period of the 1-MHz clock, so the amplifier should
have no trouble settling in the allotted time. Also, since the phase margin is a generous
80 , the settling behavior should also be free from ringing.

The second amplifier can be a scaled-down version of the first amplifier. The capaci-
tors in the second stage are so much smaller than those in the first stage that a scaling factor
of 10x appears reasonable. However, such aggressive scaling offers diminishing returns.
Scaling the first stage by factor of four yields convenient device widths that are close to

This quick calculation assumes the amplifier is connected in unity-gain feedback and drives an output load of
0.5 pF. Thus, a 10-MHz UGF corresponds to a settling time constant of 1 (2 (10 MHz)). The actual operating
condition is somewhat different (the feedback factor is 0.94 and 0 4 pF plus CMFB capacitance), but this
fact does not change the conclusion that the amplifier is plenty fast.
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the minimum allowed in the process, and the combined power consumption of the two
amplifiers is no more than 15% higher than if a 10x scaling factor were applied.

7.7 Intermediate Verification
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Figure 7.29 Impulse response check – A1 transistorized.

Let’s perform a few checks with the first amplifier transistorized. Figure 7.29 shows
that the impulse response still passes through the expected points and Figure 7.30 confirms
that the modulator still appears to operate properly with a dc input. Such quick checks help
establish that the system is ready for more detailed simulations.

Before doing such simulations, let’s look more closely at the output voltages of the
first integrator. Figure 7.31 shows a zoomed-in view of the single-ended waveforms present
at the output of the first integrator when the feedback is [n] 1. Two features of these
waveforms deserve mention.

First note that when x1 changes from 0.9 V to 0.8 V over the course of a clock period,
it begins this 0 1-V transition by stepping up by nearly 0.6 V! To understand why such
counterintuitive behavior happens, consider the half-circuit in Figure 7.32. This figure
illustrates the transition from phase 1 to phase 2 when [n] 1 and u[n] V . In this
scenario, the voltage on the left side of C1 increases by V and this positive-going step
propagates via voltage division to all capacitors in the network virtually instantaneously
(limited by the conductance of the switches). After this initial charge redistribution event,
the amplifier takes over and drives 1 to zero and to 0 11 V. Note that although the
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Figure 7.30 Short simulation with dc input – A1 transistorized.
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Figure 7.32 V to Vdd switching event.

initial x1 voltage, at about 1.5 V in Figure 7.31, is well outside the linear range of the
amplifier, such excursions are immaterial as long as the amplifier settles.

The slewing portion of the charge transfer operation is controlled by the 3- A bias
current of the transistors in the differential pair and fits within our quarter-clock-period
budget. Once the inputs of the amplifier fall within the differential pair’s linear range, the
amplifier outputs converge exponentially to their final values.
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Figure 7.33 Spectrum with the first amplifier transistorized.

Figure 7.33 shows the results of a long modulator simulation with the first amplifier
and its common-mode feedback transistorized. Since the quantization noise is still sharply
shaped, we conclude that the amplifier is sufficiently linear to prevent distortion of the
out-of-band quantization noise from degrading the SQNR. However, the amplifier is not
so linear that harmonics of the input signal are negligible. Nonetheless, we deem the 92-
dBFS third-harmonic distortion to be adequate. A similar simulation at the slow-hot corner
yields a 2-dB degradation in the SNDR, validating our 80-dB target gain.

To verify that the noise of the amplifier is acceptable, we can do AC noise analysis of
node x in the circuit shown of Figure 7.34. Node x measures the combined voltage across
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so the noise at node x, n , is the noise that gets sampled on these capacitors. Since this
noise is sampled, we sum the squared values of n at all alias frequencies and then take the
square root to obtain the sampled-data noise density shown in Figure 7.35(a). Integrating
these noise densities (squared, and then taking the square root) yields the curves shown in
Figure 7.35(b). Let’s compare these simulation results with our kT C-based theory.

In phase 1, where the amplifier does not play a role, we expect the noise referred to the
single-ended input to be 0 5kT (OSR C1) 3 3 Vrms . The simulated value is within
10% of this prediction. In phase 2, the noise of the amplifier yields a value that is 4 dB
higher than straight kT C noise. Approximately 1 dB of this increase is due to the 1 f noise
of the amplifier. The sum of the phase-1 and phase-2 noise is 3 62 5 82 6 8 Vrms,
which corresponds to a level of 99 4 dBFS. So, despite leaving 3 dB of SNR margin, we
are now 1.6 dB short of our 100-dB SNR target. (Remember that we only guarantee that the
modulator works for inputs below 1 dBFS.) If we were committed to meeting the SNR
target, we would be obliged to scale the capacitors and the amplifier by at least a factor
of (1 6) 1 4 Also, if we were concerned about 1 f noise, we would adopt a
technique such as chopping [2]. To keep the design process moving forward, we choose to
leave the capacitors and amplifier as they are.
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7.8 Switch Design

Clearly, switches that connect to V need PMOS devices, and switches that connect to V

need NMOS devices. Switches that pass both high and low voltages require transmission
gates. Figure 7.36 plots the worst-case conductance of a switch consisting of a 1- m-
wide NMOS in parallel with a 4- m-wide PMOS. This 4:1 ratio was chosen to balance the
NMOS and PMOS conductances at the voltage extremes.

From this plot, we see that below V 0 8 V the PMOS device contributes little to
the switch conductance. If we choose a low amplifier input common-mode voltage, say
0.5 V, then the switches at the virtual ground can be implemented with NMOS devices
only. (This is another benefit of choosing an amplifier with a PMOS input pair.) We also
see the switch conductance varies over a 5:1 range. The reader may well worry that such
a dramatically nonlinear characteristic will cause nonlinearity in the modulator. However,
nonlinear switch resistance is unimportant as long as the resistance is low enough that the
circuit settles.

C2

C1 rr

R 1

(2r 1 )C1

Figure 7.37 Effect of switch resistance on settling time.

Figure 7.37 quantifies the effect of switch resistance on settling time. To have a neg-
ligible impact on the settling time, we want 2r 1 . Since the worst-case resistance
of a 4/1 transmission gate (2.3 k ) plus the worst-case resistance of a 1- m NMOS at
V 0 5 V (0.6 k ) is a small fraction of 1 50 kΩ, this combination can be used
for the switches associated with the input sampling network. Other switches are sized
similarly, subject to the process-constrained minimum width of 0.5 m.

7.9 Comparator Design

Figure 7.38 shows the schematic of a popular comparator. This StrongARM comparator
[3] operates as follows. When ck is low, the comparator is in its reset state, with the
differential pair turned off and all nodes above the differential pair pulled to V . When
ck rises, the current in the differential pair pulls down on the p and q nodes, activating the
NMOS devices M3 and M4 which in turn pull down on the R and S nodes. The imbalance

The divisions by 2 account for the double-sampling of the single-ended input.
This calculation uses 55 C 328 K, since an IC is usually warmer than room temperature.

( ) 10 10 is a function from the toolbox.
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in the pull-down currents from the differential pair is amplified by the positive feedback
provided by M5 and M6 until either R or S goes low, which in turn sets the RS latch to
the result of the comparison. The RS latch may be constructed with cross-coupled NAND
gates, as illustrated in Figure 7.38, or it may be implemented using either of the latches
shown in Figure 7.39.

V

M5 M6

M3 M4

S R

ck ck

M2M1

ck
M0

p q

R

S

Figure 7.38 StrongARM comparator with RS latch [3].
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S R
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S
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Figure 7.39 Alternative RS latches: (a) jam latch, and (b) symmetric latch.

Figure 7.40 shows the schematic of the comparator that we will study via simula-
tion. Figure 7.41 plots the internal waveforms of the comparator in response to a 1-mV
input. We see that the P and Q signals plummet rapidly but the Rb and Sb signals hover
around V 2 for 100 ps before one of them goes low. The output of the latch changes
after another 100 ps, with the rising transition leading the falling transition courtesy of
the cross-coupled NAND gates. The simulated power consumption of the comparator is
0.2 W when clocked at 1 MHz.

Figure 7.42 superimposes the results of several simulations with ever-smaller inputs.
From these curves we see that the time it takes the comparator to resolve a small differen-
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Figure 7.40 Comparator schematic.
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tial input is longer than the time needed to resolve a large input, and the time appears to
increase by a fixed amount for each decade decrease in . This metastable behavior is an
important phenomenon and we take a moment to examine it further.

CKB
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
time (ns)

R
B

,S
B

Vi = 100 μV Vi = 10 μV Vi = 1 μV

Figure 7.42 Comparator transient simulation with small inputs.
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Figure 7.43 Derivation of the regeneration time-constant.

Figure 7.43 contains an abbreviated analysis of the small-signal equivalent of a pair
of cross-coupled inverters operating near the metastable point. According to the analysis,
any initial condition is amplified with an exponential whose time-constant is

regen
C

(7.30)

Consequently, we expect that reducing the input differential voltage by a factor of k will
increase the delay of the comparator by ( regen)(ln k). To check this prediction, Figure 7.44
plots the nominal delay of the comparator as a function of the input voltage and lists the
value of the regeneration time constant obtained by fitting a line to the small-input data.
The quality of the fit provides qualitative support of our analysis.

As a final point, we note that it is common practice to size the gates connected to R/S
such that their switching point is below the R/S metastable voltage in order to prevent the
latch outputs from changing until the comparator has resolved.

Other comparator parameters that are typically of interest include offset, hysteresis,
and noise. However, in a single-bit modulator, comparator offset is irrelevant, since it
merely results in a corresponding offset at the output of the second integrator. Similarly,
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comparator noise is usually insignificant compared to the quantization noise and thus can
be ignored. Last, hysteresis can cause changes in the modulator’s dynamics, but again the
effect of hysteresis on the in-band performance is usually negligible.

7.10 Clocking

P1CK

P2

Figure 7.45 A simple non-overlapping clock generator.

Figure 7.45 shows the schematic of a simple non-overlapping clock generator. The
cross-coupled NOR gates in this circuit ensure that P1 goes low before P2 can go high, and
vice versa. However, there is more to clocking the switches than just ensuring no overlap.

1D

M1

1 M2 C
1 :

1D :

Figure 7.46 Early/late clock phases.

Figure 7.46 shows the sampling arrangement that exists in most switched-capacitor
circuits. Let’s consider the effect of charge injection from the switches M1 and M2. The
channel charge in M2 is signal-independent since the drain and source voltages of M2 are
signal-independent whereas the channel charge in M1 is signal-dependent. In our idealized



196 CIRCUIT DESIGN FOR DISCRETE-TIME DELTA-SIGMA ADCS

view of switched-capacitor circuits, M1 and M2 turn off simultaneously. However, if M2
is still on when M1 turns off, part of M1’s channel charge is transferred to the sampling
capacitor and will be added to the integrating capacitor on the subsequent phase 2. Since
this charge is nonlinearly related to the signal, distortion results. However if M1 is on when
M2 turns off, then a fixed amount of charge is injected, which only introduces a dc offset.
Consequently, it is standard practice to delay turning off M1 until M2 has been turned off.

C

C
2

1D

1

To
opamp

(a) (b)

C C

Substrate

2

C

Figure 7.47 (a) Bottom-plate sampling. (b) Capacitor parasitics.

Figure 7.47 shows a cross section of a common capacitor structure. As this figure
shows, the parasitic capacitance associated with the bottom plate is much greater than
that associated with the top plate. Orienting the capacitor as shown in Figure 7.47(a)
minimizes the capacitance on the summing node and also shields the summing node from
the substrate. The top plate of the integrating capacitor is usually connected to the summing
node for the same reasons.
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=delay/non-overlap adjust

Figure 7.48 Professional clock generator.

Figure 7.48 shows the schematic of a more elaborate clock generator that generates
the required clock phases. In this circuit, the non-overlap and delay times can be adjusted
via the inverters marked with asterisks.

Since transmission gates require complementary clock signals, non-overlap between
the active portions of these control signals and the control signals of switches on the other
phase must be ensured. In a high-speed design, it is helpful to align such complementary
clocks using a structure such as that depicted in Figure 7.49 in order to maximize the time
available for settling.
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Figure 7.49 Aligning complementary clocks.

7.11 Full-System Verification

Since we started the design process by building and verifying a behavioral model, a good
implementation strategy is to design and verify individual blocks in isolation, then in the
behavioral version of the modulator, and then together with other blocks in the modulator.
Short simulations (impulse response check, dc input) should be performed before launch-
ing long spectrum simulations. It can be tempting, especially when time is at a premium,
to assemble everything and then try to debug the modulator as a whole. After all, this has
to be done eventually. However, this approach is not recommended, since debugging a full
modulator using long transient simulations is very time-consuming and usually provides
little helpful information. It is not unusual for some unforeseen problem to appear dur-
ing the verification process, and unfortunately, even this simple design fell into the typical
category.
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Figure 7.50 A problematic spectrum.

Figure 7.50 shows a spectrum obtained when the design was mostly transistorized.
(The clock generator and bias are behavioral.) Since the spectrum exhibits numerous har-
monics, with the worst at the 56-dBFS level, clearly a disaster has occurred. Some clues
can be gleaned from the spectrum – for example, since the noise-shaping follows the ex-
pected shape down to very low frequency without flattening out, we expect the amplifiers
are not the source of the problem – but nothing conclusive can be deduced from just this
spectrum. By systematically doing short simulations of the modulator with individual el-
ements transistorized, the problem was tracked down to the switches attached to the right
sides of the C1 capacitors (nodes XX and YY in Figure 7.15).
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Figure 7.51 Voltage waveforms at the right sides of the C1 capacitors.

Figure 7.51(a) shows a close-up of the voltages on the XX and YY nodes at a time
when the difference between the input and the feedback is large. We see large glitches
on these nodes, so large that the XX node goes negative enough to partially turn on the
phase-1 NMOS switch and thereby lose some of the charge that was supposed to go to the
integrating capacitor. Although every switched-capacitor circuit depends on there being
no charge lost to switches that are supposed to be off, this is rarely a problem since the
glitches are usually small enough that the off switches stay off. In our case, however, the
combination of a large V -V transition, a low value of ICM, and small parasitics relative
to the size of the switched capacitor gave rise to this unusual situation.
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Figure 7.52 Spectrum with most blocks transistorized.
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To tame this problem, it was sufficient to add 100 fF of capacitance between the XX
and YY nodes. Figure 7.51(b) shows that the negative-going glitch has been reduced by
a few hundred mV and now Figure 7.52 shows the spectrum is much improved. This
remedy is workable, but comes at the cost of increased noise and a higher opamp load.
An alternative which avoids these problems is to turn the troublesome switches off with a
negative gate voltage, but this solution requires a negative voltage to be generated. Last, we
note that adopting a multi-bit architecture would also avoid the problem since the feedback
and the input are unlikely to differ by V .
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Figure 7.53 Simulated SQNR of the transistorized modulator.

Given the unusual nature of this problem, we choose the brute-force solution and
present the simulated SQNR and SQNDR of the patched design in Figure 7.53. According
to the simulations, the power consumed by the modulator is P 40 W. Combining the
40- W power consumption with the 1-kHz bandwidth and 98-dB DR yields a 172-dB
figure-of-merit. The latter number is respectable, but is admittedly more than 10 dB below
the current state of the art for this signal bandwidth.

Now that we have gone through a first-pass at the design, we content ourselves to list
the steps needed to bring the design up to industrial standards. A commercial design would
need to have power-down and debug features added, and would need to be simulated over
process, temperature, and voltage corners. Monte Carlo checks (especially of the biasing),
as well as verification of reliability and aging, are also recommended. And, of course, all
these need to be well documented so that others can modify the design for their specific
requirements. Lucky for us, we have the option of stopping here and moving on to fresh
territory.
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7.12 High-Order Modulators

7.12.1 Architecture

The design procedure for a high-order modulator is very similar to the design procedure
we followed in our low-order example. Consider the fourth-order CRFB system depicted
in Figure 7.54. The difference equations associated with this structure are listed in Fig-
ure 7.55. Figure 7.55 also shows a simplified switch-level implementation of this mod-
ulator and the associated timing diagram. Using reasoning similar to that applied in the
second-order example, let’s verify that the schematic is able to implement the difference
equations.

First, we see that [n] is obtained by quantizing x4[n] at the end of phase 1. Next,
x1[n 1] and x3[n 1] are evaluated during phase 2, based on the values of x2[n] and x4[n]
sampled during the preceding phase 1, and on [n] as it becomes available during phase 2.
Then x2[n 1] and x4[n 1] are evaluated during phase 1, based on the available value
of [n] and on the x1[n 1] and x3[n 1] values sampled during the preceding phase 2.
The process then repeats. Note that each amplifier settles individually – there is no need
for series settling even in such a high-order modulator.

7.12.2 Capacitor Sizing
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Figure 7.56 Example front-end fragment: (a) simplified schematic; (b) block diagram with noise
sources.

As with our low-order example, the coefficients computed after dynamic-range scal-
ing correspond to capacitor ratios, while absolute capacitor sizes are dictated by noise.
However, since a high-order modulator is unlikely to use an oversampling ratio that is as
high as in our low-order example, we cannot necessarily ignore the contribution of back-
end stages to the thermal noise. For example, suppose that C1 1 pF, and C2 2 pF,
OSR 30 and that we want to make the input-referred noise of C3 in Figure 7.56 such that
the combined input-referred noise of C1 and C3 at the passband edge is no more than 1 dB
above that due to C1 alone. To achieve this goal, the input-referred noise of C3 must be no
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more than (1) 1 0 25 times the noise of C1. Since the gain of the first integrator
at the passband edge is

A
C1 C2

e OSR 1
C1
C2

OSR
5 (7.31)

we therefore require

C3
C1

(0 25)(52)
C1
6

(7.32)

Since the power consumed by an integrator stage is roughly proportional to its ca-
pacitive load, the power consumed by the second integrator (INT2) under the assumptions
above will be approximately one-sixth of the power needed by the first integrator (INT1).
If, on the one hand, we had allocated too little of the noise budget to INT2, then C3, and
hence the power consumed by INT2, would have been unduly large. On the other hand,
allocating too much of the noise budget to INT2 leaves less for INT1 and its power con-
sumption increases. To find the optimal noise allocation, we can proceed as follows.

Assume that the power consumed by INT1 is proportional to C1 and likewise that the
power consumed by INT2 is proportional to C3. If we further assume that the proportion-
ality constants are the same, then the objective function

f (C1 C3) C1 C3 (7.33)

is a measure of the total power consumption.

A specification on the total in-band noise can be captured with the function

(C1 C3)
1

C1

2

C3
(7.34)

Here, 2 is a constant that refers INT2’s noise power to the input of INT1. If we follow our
earlier strategy of using A , the gain of INT1 at the passband edge, to input-refer INT2’s
noise, then 2 1 A2 . This approach is appropriate when the application is sensitive to
the peak noise density in the passband. However, if the integrated noise is more relevant
than the spot noise, then using the mean-square value of the attenuation function provided
by INT1 is more appropriate, in which case 2 1 (3A2 ).

The optimization problem at hand is to find C1 and C3 that minimize f subject to
an equality constraint on . This problem, as well as the more general problem involving
more than two stages, are readily solved by using the Lagrange multiplier method:

f ( ) 0 (7.35)

(1 1)
1

C2
1

2

C2
3

0 (7.36)

which gives

C1

C3 (7.37)

Thus, we see that no matter what the value of the noise constraint is, the minimum
power consumption is achieved when the C3 C1 ratio is . A convenient method is there-
fore to ratio the capacitors as indicated and then scale them in unison to achieve the required
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noise. For example, if we assume that C1 1 pF in our previous example consumes the
entirety of the noise budget (i.e., the noise constraint is 1 (pF) 1), then, to account for
the second stage, we initially set

C3 C1 0 2C1 0 2 pF (7.38)

and compute
1

C1

2

C3

1
1 pF

0 22

0 2 pF
1 2 (pF) 1 (7.39)

To achieve the noise target, we therefore need to scale C1 and C3 by 1.2:

C1 1 2 pF (7.40)
C3 0 24 pF (7.41)

7.12.3 Combining the Noise from Multiple SC Branches
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Figure 7.57 How to refer the noise from a second SC branch back to the first.

An important step in the procedure above is to refer the noise from multiple SC
branches to a single branch. Figure 7.57 shows a pair of switched-capacitor branches
and their associated noise sources. To combine these noise sources into a single source
attached to the top branch, first convert the noise voltages into noise charges and add them:

q2 q2
1 q2

2 2kTC1 2kTC2 (7.42)

Next, refer this noise charge back to the input side of C1 as illustrated in Figure 7.57:

2 q2 C2
1

2kT

C1
1

C2
C1

(7.43)

7.13 Multi-Bit Quantization

When single-bit quantization is used, the quantizer is just a single comparator and each
DAC is just a single switched-capacitor branch. To implement multi-bit quantization, the
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loop filter’s output can be digitized using either multiple comparators or multiple compar-
isons.

V

S R

ck ck

ref in refip

ck

(a)

(b) ref
ip

ref
in

Figure 7.58 Dual-differencing comparators: (a) based on the StrongARM latch, and (b) auto-
zeroing.

Let M be the number of steps in the quantizer transfer function. If we choose to
perform quantization in one clock cycle, then we need M comparators to compare the loop
filter’s output to M reference voltages. Since both the loop filter’s output and the reference
levels are differential signals, we need M dual-differencing comparators (Figure 7.58).

The circuit in Figure 7.58(a) replaces the differential pair of the StrongARM com-
parator with two differential pairs connected in parallel. One differential pair compares i

with refn and the other compares i with refp. The difference between the common-mode
voltages of these signals should be within the linear range of the differential pairs. The
alternative arrangement where i and i connect to one differential pair, and refp and refn
connect to the other, is likely to be disastrous, since these two differences are likely to be
well outside the linear range of the differential pairs.

The circuit in Figure 7.58(b) uses a pair of inverters that are biased at their trip points
during the reference-sampling phase and then connected in positive feedback just after the
sampling capacitors are connected to the input signal. Again, refp should be compared with
i and refn should be compared with i for best performance. One particularly attractive
feature of the circuit is auto-zeroing, whereby the offsets of the inverters are suppressed by
their open-loop gain.
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Figure 7.59 A four-step quantizer.
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Figure 7.59 shows how M 4 dual-differencing comparators can be used to construct
a flash quantizer. The analog input signal is applied to one pair of inputs in all comparators
while different reference voltages are applied to the other pairs. The reference voltages for
the comparators can be generated using a resistor string connected between the refp and

refn voltages. (Figure 7.59 shows two such strings for diagrammatic clarity. In practice, a
single string is sufficient, but the wiring is more tangled.)
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Figure 7.60 A four-element DAC.

Figure 7.60 shows the DAC counterpart to the flash quantizer. This unary-coded DAC
consists of M identical switched-capacitor branches, each of which is controlled by one of
the M comparators. To implement a binary-coded DAC, the capacitors would be weighted
by powers of two.

In contrast to a flash ADC which resolves M 1 levels using M comparators in a sin-
gle clock cycle, a successive-approximation register (SAR) ADC resolves 2 levels using
a single comparator and m 1 clock cycles. Figure 7.61 illustrates a single-ended imple-
mentation of a 3-bit version of such an ADC. This circuit consists of a binary-weighted
capacitor array, one comparator, and some control logic. It operates as follows.

In the sampling phase, the comparator is auto-zeroed, and the input voltage is sampled
onto the capacitor array. Next, the sampling and autozero switches are opened, and the
SAR logic sets the DAC switches such that the MSB capacitor is connected to Vref while
the other capacitors are connected to ground. If the sampled value of is above Vref 2,
then the voltage at node x will be below the threshold of the comparator, and once the
comparator resolves this fact, the SAR logic will set the MSB of the data word to 1. If the
MSB (b2) is 1, then the 4C capacitor stays connected to Vref ; otherwise, the 4C capacitor is
switched to ground when the 2C capacitor is connected to Vref . The comparator is clocked
again, and the next data bit is determined. Based on this bit (b1), the 2C capacitor is either
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Figure 7.61 Three-bit SAR quantizer (single-ended version).

left connected to Vref or is switched back to ground when the LSB capacitor is connected
to Vref . The final comparison resolves the LSB (b0).

The earliest implementations of SAR ADCs used a high-rate clock to drive the SAR
logic, but nowadays the SAR logic generates the bit clock asynchronously in response to
each comparator decision. Many technological improvements have been made in recent
years, including the use of capacitors in the attofarad range [4]-[7].

The SAR architecture can yield a very power-efficient ADC, especially when the
resolution is low, and thus a SAR ADC is a good fit for the quantizer in a ADC.
However, since the speed of a SAR ADC is lower than that of a flash ADC, a flash ADC is
still needed when maximizing the sample rate is of paramount importance. Interpolating
between these two architectural extremes yields such arrangements as multi-bit SAR [8]
and two-step [9] ADCs.

7.14 Switch Design Revisited

Section 7.8 considered only simple NMOS, PMOS or transmission-gate switches. We saw
that switches having a wide input voltage range exhibit a highly nonlinear conductance,
and mentioned that this effect does not cause distortion as long as the circuit settles. A
hidden premise in this assertion is that the input is a sample-and-held waveform, which is
valid for all signals within the ADC itself but is usually not valid for the input to the ADC.
If the ADC’s input is a continuous-time signal, then nonlinear conductance of the input
switch can limit the high-frequency linearity of the ADC.

Figure 7.62 illustrates the concept behind a solution to the problem of input-dependent
switch resistance. In this bootstrapped switch, the V of the NMOS switch is fixed at V ,
thereby making the switch’s on-conductance independent of the input voltage. Figure 7.63
shows an implementation that prevents over-stress on any device [10].
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To demonstrate how effective this technique can be, Figure 7.64 plots the simulated
IMD3 of the voltage across a switched capacitor driven by a pair of 0.25-Vp sine waves
centered at V 2 0 9 V. One pair of curves uses a transmission-gate switch containing
a 1- m NMOS in parallel with a 4- m PMOS while the other uses a bootstrapped 1- m
NMOS. In both cases, reducing the size of the sampling capacitor relative to the switch
reduces distortion, but the transmission gate fares so poorly compared to the bootstrapped
switch that good high-frequency performance, say, 90-dBc IMD3 at 10 MHz would re-
quire a transmission gate that is more than 100 times the size of a bootstrapped switch.

Other switch tricks include switching the back-gate (to reduce the nonlinearity of C )
or bootstrapping the back-gate (to hide C ) [11].

7.15 Double Sampling
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Figure 7.65 Double-sampling integrator [12].

Figure 7.65 shows the structure of a double-sampling integrator [12]. Since this circuit
does integration on both phase 1 and phase 2, the sample rate is double the clock rate. In
the context of a ADC, doubling the sample rate (for a given bandwidth) provides a
sizable SQNR improvement and thus double-sampling is very attractive. Furthermore,
since double-sampling makes use of the idle phase of the opamp, a double-sampled ADC
is more efficient than one that does not use double sampling.

To derive the transfer function of this integrator, first note that it suffices to only
analyze what happens when the circuit transitions from phase 1 to phase 2, since the same
thing happens during the other transition. Next note that the input common-mode voltage
( ) of the amplifier is irrelevant, and thus we can assume that 0. Figure 7.66
summarizes the analysis. On phase 1 the input capacitors sample [n], and on phase 2 the
sum of [n] and [n 1] is accumulated on the feedback capacitors with a C1 C2 factor.
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Thus, the transfer function of this integrator is

V (z)
V (z)

C1
C2

1 z 1

1 z 1 (7.44)

The advantages of the double-sampling integrator shown in Figure 7.65 are signifi-
cant, but this circuit as drawn provides no means to set the input common-mode voltage.
Adding small conventional switched-capacitor branches to the summing nodes solves this
problem.

DAC
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b1
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b2

a3

b3 b4

z 1

u

1

1 1

1 1
1 1

1 1 c3
1

1 1c2

Figure 7.67 Loop filter with double-sampled integrators.

Figure 7.67 shows the structure of a ADC whose loop filter employs such double-
sampled integrators. Note that it is not possible for every integrator in the loop filter to
use the double-sampled integrators of Figure 7.65, since the L1 loop gain would have
L1( 1) 0 and this constraint would not allow the loop to support an arbitrary NTF. To
overcome this limitation, it suffices for the last integrator to have the more conventional
1 (1 z 1) integrator transfer function. This integrator can be implemented with a pair of
ping-ponged standard strays-insensitive switched-capacitor branches. Note that since this
integrator is preceded by several other integrators, mismatch between the ping and pong
branches is not problematic.

7.16 Gain-Boosting and Gain-Squaring

The amplifiers in our low-speed example system had the luxury of using long-channel
devices to achieve high dc gain. In high-speed applications, however, the large parasitic
capacitances of such long-channel devices make the amplifier unacceptably slow. In this
section we examine two techniques that enhance an amplifier’s gain without drastically
compromising its speed.

The first technique operates at the transistor level. Figure 7.68(a) shows a gain-

boosted cascode [13]. This circuit uses an auxiliary opamp to enhance the of the
cascode by a factor equal to the opamp gain. The gain of the composite amplifier is there-
fore increased by the same factor. Figure 7.68(b) illustrates the differential version of this
arrangement.
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Figure 7.69 Gain-squaring integrator [14].

The second technique operates at the amplifier and switch level. The gain-squaring

circuit shown in Figure 7.69 uses capacitor C to sample the voltage at the negative in-
put terminal of the opamp during phase 1, and then puts this capacitor in series with the
amplifier during the integration phase [14]. If C dominates the input capacitance of the
amplifier, then the effective gain of the amplifier is increased, and both the amplifier’s
offset and 1 f noise are canceled.

7.17 Split-Steering and Amplifier Stacking

In simulation, our example second-order modulator promised a FOM of 172 dB with a
bandwidth of 1 kHz. The current FOM record-holder is a fourth-order 1-bit feedforward

modulator implemented in a 0.35- m process [15]. When clocked at 640 kHz, this
ADC achieves FOM 185 dB for the same 1-kHz bandwidth as our paper design. Since
a 13-dB improvement in FOM corresponds to a 20x improvement in power efficiency, the
efficiency of this ADC is truly remarkable. Let’s take a quick look at the circuit techniques
used to achieve this record-setting efficiency.

Figure 7.70(a) shows one half of a pseudo-differential inverter-based amplifier. This
circuit has three attributes that make it more efficient than the folded-cascode amplifier
we used in our example modulator. First, since the input is applied to both NMOS and
PMOS devices sharing a common bias current, the transconductance is double that of a
single device operating with the same bias current. Second, since all of the bias current is
used to realize transconductance, there is no current wasted on other amplifier functions,
such as folding to increase swing and extend the common-mode input range. Last, unlike
a class-A amplifier such as a folded cascode, the slew current is not limited by a fixed bias
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Figure 7.70 (a) Inverter-based amplifier. (b) With level-shifting capacitors. (c) With separate
inputs.

current. The disadvantages of this inverter-based amplifier are that the gain is limited to
the self-gain of a single MOS device, that the available output swing is limited to the sum
of the threshold voltages of the MOS devices, and that the bias point varies with supply,
process and input common-mode. In fact, if the threshold voltages are large and the supply
voltage is low, then the transistors may essentially be off!

Gain can be improved (at the expense of output swing) by adding cascodes and by
gain-boosting, while the other two disadvantages can be addressed by the arrangement
in Figure 7.70(b). In this circuit, level-shifting capacitors allow the bias voltages of the
NMOS and PMOS devices to be set independently, and thereby allow the bias current
to be made independent of process and supply voltage. Unfortunately, the level-shifting
capacitors contribute kT C noise and add attenuation. To avoid a noise penalty, the level-
shifting capacitors therefore need to be large.

The circuit of Figure 7.70(c) does away with the level-shifting capacitors to yield an
amplifier with two pairs of inputs. This amplifier can be used in the split-steering integra-

tor shown in Figure 7.71. This integrator takes advantage of the fact that a standard SC
integrator can support an arbitrary input common-mode. In this integrator, the common-
mode of the top input pair is set to VT while that of the bottom pair is set to V B. A bias
circuit creates these two voltages such that the desired operating point is established de-
spite process, temperature, and supply-voltage variations. At low supply voltage, the VT

voltage can even be lower than the V B voltage. Common-mode feedback is achieved via
these bias voltages.

In a switched-capacitor circuit, the signal power is proportional to (V )2, and the
noise power is inversely proportional to C. Thus, for a given SNR, increasing V by a
factor k allows C, and hence , to be made k2 times smaller. This trade-off indicates
that FOM can be improved by using a large supply voltage. We have seen that the split-
steering integrator of Figure 7.71 makes efficient use of the supply current to realize a
given transconductance, but can we take advantage of a higher supply voltage to increase
the transconductance efficiency further?

Figure 7.72 depicts a pair of integrators (shown single-ended for simplicity) that have
been stacked so that the supply current runs through both amplifiers. Since the composite
transconductance is double that of a single amplifier, this arrangement provides a way to
exploit a high supply voltage. However, there are two penalties associated with amplifier
stacking. The first is that the output swing of each integrator is halved, and thus the in-
tegrating capacitor needs to be doubled and the input-referred noise of subsequent stages
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becomes more significant. With OSR 320, the in-band gain of the integrator is nonethe-
less so large that the power needed by the backend stages remains negligible. The second
disadvantage is that additional circuitry, namely the balancer in Figure 7.72, is needed to
ensure that the two integrators behave as one. In [15], the balancer is implemented with
a small passive switched-capacitor subtractor and a non-noise-critical amplifier. In that
work, the noise contribution of the balancer is only 1% of the ADC’s total noise.
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Figure 7.73 Twin double-sampling [15].

The final trick employed in this ADC is twin double-sampling, illustrated in Fig-
ure 7.73. The double-sampling switch arrangement on the left side of the capacitors ef-
fectively doubles the signal swing, thereby allowing the sampling capacitance to be re-
duced. Splitting the sampling capacitance into two halves driven in counterphase allows
both clock phases to be used for integration. Noise analysis shows that for the same to-
tal sampling capacitance as the fully double-sampling integrator (Figure 7.65), the twin
double-sampling configuration achieves the same low-frequency input-referred noise but
requires an integrating capacitor that is only half as big.

Figure 7.74 shows the measured in-band noise power as a function of the dc input.
Based on this data and on sine-wave testing, a dynamic range of 136 dB is observed. The
total power consumption is 13 mW from a 5.4-V supply. Most of the power is consumed by
the first integrator (55%) and clock generation (40%), with the remaining 5% consumed by
the other three integrators and the comparator. Chopping was used to suppress 1 f noise.
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7.18 Noise in Switched-Capacitor Circuits

In this section we take a more detailed look at noise in switched-capacitor circuits. For ease
of reference, the thermal noise models of a resistor and a MOS transistor in saturation are
given in Figure 7.75 and Figure 7.76, respectively. For a MOS transistor used as a switch,
the noise model of a resistor applies. As illustrated in Figure 7.75, thermal noise can be
modeled by a voltage source in series with the resistor or with a current source in parallel
with the resistor. A similar duality applies to the transistor: thermal noise can be modeled
with a voltage source in series with the gate or with a current source across the drain and
source terminals. The noise sources in each case are white, meaning the expressions for
the power spectral densities S ( f ) and S ( f ) are independent of f . The single-sided power
spectral density (PSD) of the resistor’s voltage noise is

S ( f ) 4kT R (7.45)

where k 1 38 10 23 J K is Boltzmann’s constant and T is the temperature in Kelvin.
Similarly, the PSD of the transistor’s current noise is

S ( f ) 4kT (7.46)

where is a device-dependent fitting parameter. The theoretical value of is 2
3 , but there

are more than a few reports of measured values in the 1–2 range.
+− R
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Figure 7.77 Analysis of the noise across a capacitor.

White noise has infinite power because the integral of S( f ) over all frequencies is
unbounded. However, in a real circuit, capacitance band-limits the noise and makes the
noise power finite. For example, Figure 7.77 shows a noisy resistor connected to a capacitor
and provides the key steps that lead to the result we used in our first-order noise analysis,
namely that the mean-square voltage across the capacitor is

2 kT

C
(7.47)

The above result is a consequence of the fact that the noise bandwidth of a single-pole
filter is

NBW1
1

4RC
(7.48)

The author is grateful to Matthias Steiner for sharing this observation. To understand why the fully double-
sampling integrator is at a disadvantage, note that noise on the sampling capacitors sees a 1 1 transfer function
to the output. This transfer function amplifies the noise density at low frequencies by a factor of 4.

This result can also be obtained by appeal to the equipartition of energy physical principle. According to
this principle, the mean energy associated with any degree of freedom in a system at thermal equilibrium is

2. Since the energy of a capacitor charged to a voltage is 2 2, equipartition of energy tells us that
2 2 2, which is identical to (7.47). Similar results apply to the mean-square noise current in an inductor,

or the mean-square displacement of a mass in mass-spring system.
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Since the voltage noise of the resistor is proportional to R while the noise bandwidth is
inversely proportional to R, multiplying NBW1 by the 4kT R noise density of the resistor
yields the resistor-independent result of (7.47).

Sampling the voltage across the capacitor yields a discrete-time sequence that has
the same power as (7.47). If the sample rate is low ( f 1 RC is sufficiently low since
the initial condition associated with the previous sample is attenuated by at least 2 time-
constants), then the correlation between successive samples is close to zero and thus the
discrete-time sequence is essentially white.

Since sampling the voltage on a capacitor C driven through a resistance R is equivalent
to opening a switch whose on-resistance is R, we arrive at the conclusion that the mean-
square noise voltage associated with the charging phase of a switched capacitor C is kT C.
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Figure 7.78 Opamp noise sources.

To analyze the noise associated with the charge-transfer phase, we need a noise model
for the amplifier. Figure 7.78 a shows a simple differential CMOS opamp and its internal
noise sources. We will assume that the circuit is symmetrical, that is, M1 matches M2
and M3 matches M4. By shorting the output nodes to ground and analyzing the resulting
circuit, we find that the differential output current is

i
i 1 i 2 i 3 i 4

2
(7.49)

(The noise associated with M0, the current source for the differential pair, splits equally
between M1 and M2 and thus does not appear in i . Also note that if the current-sources are
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cascoded, the noise of the cascodes is attenuated by a r factor and hence is negligible.)
Since the PSDs of i 1 and i 2 are 4kT 1 while the PSDs of i 3 and i 4 are 4kT 3,
the PSD of i is one quarter of the sum of these PSDs:

S 2kT ( 1 3) (7.50)

As indicated in Figure 7.78(b), this spectral density can be reflected to the input by dividing
by 2 ( 1 2)2 to yield

S
8kT

1
1 3

1
(7.51)

To simplify analysis, we often use the half-circuit model in Figure 7.78c, wherein

S
4kT

1
1 3

1
(7.52)

Note that when performing noise analysis on a half-circuit, we need to double the single-
ended noise power to obtain the differential noise power.

Absorbing the parenthesized term of (7.52) into leads to the definition

amp 1 3

1
(7.53)

In the best case, where 2
3 and the noise from the current-source devices is negli-

gible, amp is less than 1: amp
2
3 . However, since

2I

Veff
(7.54)

the Veff of the current source devices must be many times that of the differential pair in order
for the noise from the current source devices to be negligible. A more realistic assumption
is that the Veff ratio is 2, which implies 3 1

1
2 and hence amp

2
3 (1 1

2 ) 1. For
a folded-cascode opamp that has Veff of all its current-source devices set to double that of
the differential pair, amp

5
3 . Thus, typically amp 1. With a model of amplifier noise

in hand, we can now analyze the effect of amplifier noise during the charge-transfer phase.

Figure 7.79 illustrates the procedure. Noise comes from the switches (represented by
R1 and R2 in Figure 7.79(a) and the amplifier. The switch and amplifier noise sources are
independent, so we will calculate their effects individually and then combine them in the
mean-square sense.

For switch noise, we begin by merging R1 and R2 into R R1 R2 as shown in Fig-
ure 7.79b. Since the impedance looking to the right of R is 1 , the circuit is equivalent
to an RC circuit in which the resistor is replaced by Req R 1 . Consequently, the
integrated noise across the capacitor due to the switches is

2 S 1

4ReqC1

kT R

(R 1 )C1
(7.55)

According to this result, making R 1 will minimize switch noise.

Next, consider amplifier noise. As shown in Figure 7.79c, now looking to the right of
the resistor we see a circuit whose Thevenin equivalent is a resistance 1 in series with a
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Figure 7.79 Analysis of phase-2 noise.

voltage source whose PSD is S 2 4kT amp . Again the circuit collapses into a single
resistor and capacitor driven by a voltage source. Thus, we can immediately write

2 S 2

4ReqC1

kT amp

(R 1 )C1
(7.56)

In contrast to (7.55), minimizing the amplifier noise requires R 1 .

Combining (7.55) and (7.56) gives the noise due to both the amplifier and the switches
in the charge transfer phase:

2 kT

C1
1 amp 1

1 R
(7.57)

If amp 1, the mean-square noise in the charge-transfer phase is the same as in the
charging phase, namely kT C1, and thus the total from both phases is 2kT C1.

As a final analytical exercise, let’s consider power consumption. If we make the
definition

x R (7.58)

then the total noise from phase 1 and phase 2 is

2 kT

C1
2 amp 1

1 x
(7.59)

while the settling time-constant is (from Figure 7.37)

C1 (1 x) (7.60)

The ADC specifications place constraints on both 2 and , so we ask “What value of x

minimizes power consumption subject to constraints on 2 and ?" To simplify the prob-
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lem, assume that the power needed to drive the switches is negligible. Thus, power con-
sumption is only related to , which by (7.60) is

C1 (1 x) (7.61)

Substituting the value of C1 dictated by (7.59) gives

kT

2
2(1 x) amp 1 (7.62)

Clearly, , and hence the power consumption, is minimized if x 0, i.e. if the switch
resistance is a small fraction of 1 . In practice, the desire to minimize switch resistance
will be balanced by the power consumption associated with driving large switches and
thus, our first-cut target of R 0 1 , that is x 0 1, provides a reasonable starting
point.

7.19 Conclusions

The first half of this chapter made a first pass at the design of a single-bit second-order
switched-capacitor ADC. Design considerations for the amplifiers, comparator, clock
generator, and switches were discussed, and example circuits were given and validated
via simulation. Those simulations indicated that the design should achieve DR 98 dB,
BW 1 kHz, and P 40 W, which corresponds to FoM 172 dB. The second half of
this chapter described various architectures and circuit techniques that can be used in more
demanding applications, including multi-bit quantization, high-order loop filters, double-
sampling, and gain-boosting. This material was capped with a discussion of the split-
steering and amplifier stacking techniques used by an ADC that achieved a record-setting
FoM 185 dB (DR 136 dB, BW 1 kHz, and P 13 mW). To close the chapter,
we took a more detailed look at noise in switched-capacitor circuits. The analysis justified
our kT C noise estimates as well as our recommendation that switch resistance be a small
fraction of 1 .
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CHAPTER 8

CONTINUOUS-TIME DELTA-SIGMA
MODULATION

So far in this book, we have built intuition and gained an understanding of the basic con-
cepts behind modulation. Specifically, given the bandwidth of the input signal and the
desired SQNR, we now know how to choose an NTF and an OSR that achieve these spec-
ifications. Further, we understand the trade-offs behind various loop-filter topologies that
could be used to realize the NTF. We have seen, in detail, the many ways in which the loop-
filter could be implemented. Since the input to the modulator is an oversampled sequence,
the loop-filter has to be realized using discrete-time circuitry. As we saw in the previous
chapters, the basic building block of the loop-filter is the integrator, most often imple-
mented using opamps, switches, and capacitors in a manner similar to that in Figure 4.22.
Such switched-capacitor integrators have many benefits: their coefficients, governed by
capacitor ratios, are robust over process/temperature variations and are insensitive to stray
capacitances.

Unfortunately, however, the design of such integrators becomes increasingly challeng-
ing in low-voltage CMOS technologies due to several difficulties. Turning the switches on
and off is problematic at low supply voltages. As we saw in Chapter 4, the output of the
integrator needs to settle in a half-clock period, necessitating wideband opamps with good
settling behaviour. Thus, attempting to realize modulators with large signal bandwidth
(or equivalently, high clock rate) results in high power dissipation, or may simply not be
feasible in a given process technology. What if we realized the loop-filter with continuous-
time circuitry? To better understand this, we go back to our good friend MOD1, and
attempt to realize the loop-filter in continuous-time (CT) [1, 2, 3].
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8.1 CT-MOD1

u[n] [n]

1

1 1

z 1

(t)

u(t)
(t) [n]

u(t)

(a)

(b)
What goes here?

?

Figure 8.1 (a) MOD1 – u is sampled up-front, and the loop-filter processes the difference between
the output sequence and u[n]. (b) The loop-filter output is sampled and quantized. The quantizer’s
output waveform is compared with the input waveform.

The difference between the discrete-time and continuous-time approaches to MOD1
is shown in Figure 8.1. In the former, the input is sampled up-front. The difference be-
tween the input sequence and the fed back sequence is processed by the DT loop-filter.
The philosophy behind the CT realization is the following. The input is not sampled up-
front; rather the quantizer’s output waveform is subtracted from it, and processed by a
continuous-time loop-filter. The filter’s output is sampled, quantized, and fed back. As
usual, the quantizer is realized as an ADC-DAC cascade. The ADC converts to a dig-
ital output (which also forms the output of the modulator), while the DAC produces a
continuous-time feedback waveform from the digital output code. What is the transfer
function of the CT loop-filter in CT-MOD1, so that the NTF is (1 z 1)? Before we get to
this, we need to discuss a few aspects of DACs.

A DAC takes an input sequence and puts out a waveform that is related (linearly) to
the sequence. Every DAC is associated with a pulse shape p(t), allowing us to express the
feedback waveform as

(t) [n]p(t nT ) (8.1)

Some commonly used pulse shapes are listed below.

NRZ DAC : p(t) 1 0 t T

RZ DAC : p(t) 2 0 t 0 5T

Impulsive DAC : p(t) (t)

How is the spectrum of (t) related to that of [n]? To determine this, we proceed as
shown in Figure 8.2(a). We first form a continuous-time waveform 1(t) consisting of
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D
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Time Frequency

1(t) p(t)

NRZ
1

1 t T

[n]

n

[n] [k n] [n] (t nT )

(t)

[n]p(t nT )

0 22

0 ff

V (e )

V1( f )
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V ( f )

P( f )

[n]

1(t)

(t)

(a)

(b)

t Tt T

f

f

Figure 8.2 (a) Relating [n] to (t): the latter can be thought of as the output of a filter with
impulse response p(t), when excited by the Dirac impulse sequence 1(t). (b) Spectra of [n], 1(t)
and (t).
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Dirac impulses, related to [n] as

1(t) [n] (t nT ) (8.2)

The Fourier transforms of [n] and 1(t) are denoted by V (e ) and V1( f ), respec-
tively. We then have

V (e ) [n]e

V1( f ) [n]e 2 (8.3)

From the equations above, it is apparent that V1( f ) V (e 2 ). The DAC output (t)
can be thought of as the output of a linear time-invariant filter with impulse response p(t),
excited by 1(t). The Fourier transform V ( f ) of the DAC’s output waveform is thus given
by

V ( f ) P( f )V1( f ) P( f )V (e 2 ) (8.4)

The model of the quantizer (the ADC-DAC cascade) is shown in Figure 8.3. Sampling

ADC DAC

(t) (t)

(t nT )

p(t)(t) (t)

e[n] (t nT )

(t) (t)

Figure 8.3 Quantizer model, appropriate to analyze a CT M.

is modeled by multiplying the input (t) with a Dirac impulse train. Quantization er-
ror is modeled by adding e(t) e[n] (t nT ). The DAC pulse is modeled by a
continuous-time filter with impulse response p(t). The resulting model for the continuous-
time realization is shown in Figure 8.4(a). Part (b) of the figure is for the purist; it is
usually drawn as shown in Figure 8.4(c).

What should we replace the discrete-time integrator of a DT-MOD1 with, so that
the CT design of Fig 8.4(c) achieves the same NTF? We proceed by equating the loop
impulse responses in both cases, as shown in Figure 8.5. For simplicity, we assume that
the sampling period of CT-MOD1 is T 1. We break the loop at the quantizer input
in both cases. When the DT loop-filter is excited with an impulse, the resulting output
sequence is

l [n] 0 1 1 1 (8.5)
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DAC

ADC

?
(t)
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u(t) ?
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? (t)

e[n]

u(t)
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u(t)

(t)

p(t)

(a)

(b)

(c)

Figure 8.4 (a) A first-order CT modulator. (b) A purist’s view: C/D denotes a continuous-time
to discrete-time converter. (c) A commonly used depiction of the purist’s model.
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v(t)
?

p(t)

e[n]
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1

1 1

z 1

e[n]

z 1

p(t) : NRZ pulse

f = 1 Hz

[n]0

1

(a)

(b)

p(t)

Figure 8.5 Equating loop impulse responses in DT- and CT-MOD1.
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In the CT design, the corresponding sequence is

l (n) p(t) l (t) (8.6)

where l (t) is the impulse response of the loop-filter, and denotes convolution. To realize
an NTF of (1 z 1), l (t) should be chosen so that l (n) l [n]. If p(t) is assumed
to be an NRZ pulse, it is easy to see that using a continuous-time integrator achieves our
objective (Figure 8.5(b)).

The resulting modulator, which is an avatar of MOD1 in continuous-time, is
shown Figure 8.6(a); we call it CT-MOD1. How does the discussion above change if
the sampling rate is increased to m Hz? To achieve the same NTF, the loop-filter must be
frequency scaled by a factor m, as shown in Figure 8.6(b). It is always convenient (and
advisable) to work with a normalized modulator (where f 1 Hz) and frequency scale it
at the very end.

Normalized Prototype

Frequency scaled

ADC

DAC

DAC

ADC

(t)

u(t)

p(t)

[n]1

f 1 Hz

p̂(t) p(mt)

f m Hz

1

1

t

1 m

1

t

u(t)

(t)

(a)

(b)

[n]

Figure 8.6 (a) CT-MOD1 and (b) frequency scaled so that f m Hz.

What happens to the NTF of CT-MOD1 when the DAC pulse is modified? As shown
in Figure 8.7, using an RZ or impulsive DAC in place of an NRZ one modifies l (t)
– however, the samples l (n) remain unchanged, indicating the NTF of CT-MOD1 is
unaffected by the pulse shape, as long as

1

0
p(t) dt 1 (8.7)

and p(t) 0 t 1.

To reiterate, the only feature of the DAC pulse shape that is relevant to the NTF
of CT-MOD1 is the pulse’s area. From the discussion above, we see that a continuous-
time loop-filter can mimic the behavior of a discrete-time structure as far as the NTF is



230 CONTINUOUS-TIME DELTA-SIGMA MODULATION

NRZ

DAC

RZ

DAC

Impulse

DAC

1

1

1

1

1

2

1
(t)

t

t

t

l [n]

l [n]

l [n]

Figure 8.7 l (n) for different DAC pulse shapes.

concerned. How is the input (which is continuous-time) affected by the loop? The analysis
of the STF is not quite as straightforward as in the discrete-time case, since u(t) is CT,
while the output [n] is a discrete-time sequence. We examine this next.

8.2 STF of CT-MOD1

When attempting to characterize a linear system, we excite it with a complex sinusoid
e 2 and examine the output. We use the same strategy with CT-MOD1. The modulator
is a feedback loop consisting of continuous-time and sampled parts, complicating analysis.
To simplify matters, it is rearranged as shown in Figure 8.8. The idea behind this series of
transformations is to separate CT-MOD1 into continuous-time and discrete-time parts as
shown in part (c) of the figure. To determine the STF, we use u(t) e 2 . Thus,

1(t)
1

j2 f
e 2 (8.8)

1[n]
1

j2 f
e 2 (8.9)

The transfer function from 1[n] to [n], which is the same as that from e[n] to [n], is
simply the NTF of the loop, given by (1 z 1).

The output sequence due to u e 2 is therefore

[n]
1

j2 f

loop-filter

(1 e 2 )
NTF

e 2 (8.10)

The equation above can be interpreted as follows. [n] can be thought of as being obtained
by exciting a continuous-time linear time invariant (LTI) filter with transfer function

STF( f )
1

j2 f

loop-filter

(1 e 2 )
NTF

e sinc( f ) (8.11)

with u and sampling its output at 1 Hz, as shown in Figure 8.9. STF( f ) is called the signal
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Continuous-time Discrete-time
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u(t)

p(t)

1

e[n]

1(t) 1[n]1

1

1

1

e[n]

[n]u(t)

e[n]

u(t)

(a)

(b)

(c)

[n]

p(t)

p(t)

Figure 8.8 Steps in evaluating the STF (a) CT-MOD1, (b) moving the integrator up-front, and (c)
separation into CT and DT parts.

STF( f ) [n]u(t)

Figure 8.9 Interpretation of the STF of CT-MOD1 – the input is filtered by a continuous-time filter
with frequency response STF( f ) before being sampled.
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Figure 8.10 Magnitude responses of the loop-filter, NTF and the resulting STF.

transfer function of the CT M [1].

Figure 8.10 shows the magnitude responses of the loop-filter, the NTF and the STF.
The STF’s dc gain is seen to be unity (as expected); more interestingly, the STF has nulls
at all nonzero integral multiples of the sampling frequency. This means that all tones
that can potentially alias to dc after sampling are inherently eliminated by CT-MOD1. The
response of STF( f ) at all the alias-zones is small, though not zero, as shown in Figure 8.11.
Thus, CT-MOD1 possesses what we call the “inherent anti-aliasing” property, where the
modulator doubles up as an anti-alias filter. This remarkable property of CT-MOD1 makes
it unnecessary to use an explicit anti-alias filter up-front.

0 1 2
f f

ST
F

(d
B

)

0

10

20

30

40

Signal Band

Alias Band Alias Band

Figure 8.11 The STF of CT-MOD1 has nulls at integral multiples of the sampling frequency.

The model for CT-MOD1, assuming additive quantization noise, can be thought of as
shown in Figure 8.12. The input is first filtered by a continuous-time filter with a transfer
function STF( f ) exp( j f )sinc( f ). It is then sampled, with the samples being cor-
rupted by shaped quantization noise. In the time domain, the STF “filter” has a rectangular
impulse response as shown in the figure.

From the analysis in this section, we see that u is prefiltered before sampling – this
makes sense, since the sampling operation in CT-MOD1 occurs after the loop-filter.
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u(t) STF( f )

e[n] 1 z 1

t
1

1

n

1

1

[n]

Figure 8.12 Model for CT-MOD1, assuming an additive quantization noise model.

Is there a more intuitive way to see that the STF of CT-MOD1 has notches at
multiples of 1 Hz? As shown in Figure 8.13, the first step is to realize that the
average value of the integrator’s input (t) 0. Since u(t) cos(2 t), u(t) 0.
This means that (t), which is the average value of the feedback waveform, should
be zero. This in turn implies that the [n] 0. Referring to Figure 8.12, if
[n] 0 with u cos(2 f t), it must mean that the amplitude of the sinusoid at

the output of STF( f ) is zero. Why? A nonzero amplitude of the sinusoid at f ,
after sampling, would result in a nonzero [n]. Thus, we see that CT-MOD1 does
not respond to tones at multiples of the loop’s sampling frequency.

[n]

(t)

u(t) cos(2 t)

p(t)

1

e[n](t) 0

(t) 0 [n] 0
3©2©

1©

Figure 8.13 Intuitive explanation of zero dc output for an input at the sampling frequency.

8.2.1 Summary of CT-MOD1

By proper choice of the continuous-time loop-filter, the NTF of CT-MOD1 can be made
equal to that of its discrete-time cousin. The loop-filter has to be chosen so that its impulse
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response, when convolved by the DAC pulse shape p(t) and sampled, matches the impulse
response of the DT loop-filter. This is sometimes called impulse invariance. The NTF
is independent of pulse shape, provided the area under p(t) is 1, and that the pulse does
not extend beyond 1 s. The STF has nulls at multiples of the sampling rate; CT-MOD1
therefore features the remarkable property of inherent anti-aliasing!

While deriving CT-MOD1 from its DT prototype, we simply replaced a discrete-time
integrator with a continuous-time one, and doing so yielded the desired NTF for MOD1.
Is this serendipity, or is there a fundamental principle lurking here?

The impulse response of a discrete-time system consists of a sum of complex expo-
nential sequences of the form z , where z ’s denote its pole locations. The impulse re-
sponse of a continuous-time system, on the other hand, is comprised of a sum of complex
exponentials of the form e , where s ’s are the system poles. Since we derived the CT
loop-filter by matching the samples of its impulse response with that of the discrete-time
loop-filter, it follows that z e . Equivalently,

s ln(z ) (8.12)

The loop-filter of MOD1 has a pole at z1 1. The pole of CT-MOD1’s loop-filter, there-
fore, should be located at s1 ln(1) 0.

The loop-filter of a high-order DT modulator with NTF (1 z 1) D(z) will have
N poles at z 1; the discussion above indicates that the loop-filter of a CT modulator
that realizes the same NTF should have N integrators (N poles at s 0).

8.3 Second-Order Continuous-Time Delta-Sigma Modulation

[n]u(t) L (s)

p(t)

e[n]

[n]u[n] L(z)

e[n]

(a)

(b)

Figure 8.14 Replacing L(z) in a CIFF MOD2 with a continuous-time loop-filter. p(t) denotes the
DAC pulse shape.

MOD2 was an attempt to improve the noise-shaping performance of MOD1, while
CT-MOD1 was a continuous-time implementation of MOD1. The next logical destination
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is CT-MOD2, where the loop-filter of MOD2 is implemented in continuous-time, as shown
in Figure 8.14. MOD2 is assumed to be realized in CIFF form.

DAC

k1

21

t

1

1

l (t)

l [n]

0
t

1

0
t

1

1

1 1
1

1 1

0
t

2 1
1
2

l[n]

l[n]

(a)

(b)

p(t)

Figure 8.15 (a) The sampled pulse response of the CT loop-filter has to match l[n]. (b) l[n] and
the sampled pulse responses of the 1 s and 1 s2 paths.

The NTF of MOD2 is (1 z 1)2. Thus, L(z) is given by

L(z)
1

NTF(z)
1

1
z 1

z

(z 1)2 (8.13)

The impulse response corresponding to L(z) is

l[n] 0 1 1 1

0 1 2 3

0 2 3 4

The structure of the CT loop-filter is shown in Figure 8.15(a), and has a transfer
function of the form

L (s)
k1s k2

s2 (8.14)

Assuming that the p(t) is an NRZ pulse, we can write the sampled pulse responses of the
1 s and 1 s2 paths as

1
s

0 1 1 1

1
s2 0 0 5 1 5 2 5
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CT transfer function z-transform of sampled pulse response

1 s 1 (z 1)

1 s2 0 5(z 1) (z 1)2

1 s3 (1 6)(z2 4z 1) (z 1)3

1 s4 (1 24)(z3 11z2 11z 1) (z 1)4

Table 8.1 z-transforms of sampled pulse responses of CT transfer functions of the form 1 s , for
an NRZ DAC pulse.

k1 and k2 that result in l (n) l[n] can be determined by solving the following.

0 0
1 0 5
1 1 5

k1
k2

0
2
3 (8.15)

Clearly, the set of equations above is overdetermined, since there are more equations than
unknowns. Yet, the solution is unique, and is given by

k1 1 5 and k2 1

Another way of arriving at the same result is to equate the weighted transforms of the
sampled pulse responses of the 1 s and 1 s2 paths to L(z).

Looking up the relevant transforms from Table 8.1, we obtain

k1z 1

1 z 1
k2(0 5z 1 0 5z 2)

(1 z 1)2
z 1

1 z 1
z 1

(1 z 1)2 (8.16)

k1 and k2 can be determined by multiplying both sides of (8.16) by (1 z 1)2 and equating
coefficients of like powers of z 1.

The resulting modulator, CT-MOD2, is shown in Figure 8.16(a). To determine the
STF, we proceed in the same manner as we did for CT-MOD1.

STF( f )
1 5( j2 f ) 1

( j2 f )2

loop-filter ( )

(1 e 2 )2

NTF

(1 1 5( j2 f ))e 2 sinc2( f ) (8.17)

The dc gain of the STF is unity. The STF is the product of L(s) and the NTF eval-
uated at e 2 . Just like in CT-MOD1, the STF has nulls at multiples of the sampling
frequency, resulting in implicit anti-aliasing, as shown in Figure 8.16(b). The STF has a
zero at s 2 3, due to the feedforward nature of the loop-filter. This causes the STF to
asymptotically roll off as 1 f at high frequencies. The impulse response corresponding to
STF( f ) is shown in Figure 8.16(c). It is a weighted combination of a triangular pulse (with
height 1 and width of 2 seconds) and its first derivative.

It is important to observe that the loop-filter of CT-MOD2 does not result from simply
replacing the discrete-time integrators of MOD2 with continuous-time ones; the 1 s and
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Figure 8.16 (a) CT-MOD2 for an NRZ feedback DAC. (b) The magnitude response of the STF,
and (c) impulse response corresponding to STF( f ).

1 s2 paths must be appropriately weighted, with these coefficients being dependent on the
DAC pulse shape.

CT-MOD2 can also be realized as a CIFB structure, as shown in Figure 8.17(a). The
STF in this case is given by

STF( f )
1

( j2 f )2

loop-filter

(1 e 2 )2

NTF

e 2 sinc2( f ) (8.18)

As in the case of a CIFF modulator, notches are seen in the STF at multiples of
f , again placing in evidence (Figure 8.17(b)) the alias-rejection properties of a CT M.
Further, the magnitude response asymptotically rolls off as 1 f 2 at high frequencies. The
impulse response corresponding to STF( f ) is a triangular pulse as shown in the inset.

8.3.1 Influence of the DAC Pulse Shape

In our discussions of CT-MOD1, we found that its NTF was unaffected by the DAC pulse,
as long as the pulse had an area of unity, and did not spill over beyond 1 s. What happens
with CT-MOD2?

The pulse response of the loop-filter is the sum of the pulse responses of the 1 s and
1 s2 paths. The former, as we saw earlier, does not depend on pulse shape (provided that
the area of p(t) is 1, and its duration is less than 1 s). The response of the 1 s2 path is given
by

l2(t) tu1(t) p(t)
0

p( )(t )d (8.19)
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Figure 8.17 (a) CT-MOD2 with a CIFB loop-filter and (b) magnitude of the STF. The inset shows
the impulse response corresponding to the STF( f ).

where u1(t) is the unit step function, and denotes convolution. Since the pulse duration
is restricted to 1 s, l2(t) for t 1 can be expressed as

l2(t)
1

0
p( )(t )d t

1

0
p( )d

1

1

0
p( )d (8.20)

Recalling that the average delay of p(t) is given by

t

1

0
p( )d

1

0
p( )d

1

(8.21)

we obtain
l (n) n t n 1 (8.22)

It is thus apparent that the pulse response of the 1 s2 path depends only on two fea-
tures of p(t): namely its area and delay. Therefore, the NTF of CT-MOD2 will be inde-
pendent of the details of the DAC pulse as long as the area and delay of the pulse remain
the same.

Figure 8.18 shows l (t) for CT-MOD2 for three DAC pulses: NRZ, RZ, and the
raised cosine pulse. The area and delay of all the pulses are 1 and 0.5, respectively. We see
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that the waveforms, though different for 0 t 1, are identical after the DAC pulse has
died down. Consequently, l (n) and the NTFs remain the same for all these DAC pulses.

Figure 8.18 The pulse response of CT-MOD2’s loop-filter is independent of the DAC pulse as long
as the area and delay is maintained.

8.4 High-Order Continuous-Time Delta-Sigma Modulators

Having understood CT versions of MOD1 and MOD2, we proceed to the next logical
destination – the design of high-order CT M s. Figure 8.19(a) shows a discrete-time
prototype, on which the continuous-time prototype is based. As usual, the loop-filter’s
transfer functions from u and are denoted by L0(z) and L1(z), respectively.

Figure 8.19 Block diagrams of (a) discrete-time and (b) continuous-time modulators.
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The desired N th order NTF is of the form (1 z 1) D(z). The low-frequency gain
of the modulator’s STF is usually set to unity. Then, we see that

STF(z 1) 1
L0(z 1)

1 L1(z 1)
(8.23)

which tells us that L0(z) and L1(z) must approach each other as z 1. Since the NTF
has N zeros at z 1, L1(z) must have N dc poles. For the STF to be 1 at dc, therefore,
L0(z) must also have N dc poles. Recall that in our discussion of CT-MOD1, we reasoned
that matching the pulse response of a CT loop-filter to that of a discrete-time one is only
possible when its poles (s ) of the former are related to those (z ) of the latter as s ln(z ).
From the arguments above, it is clear that L0 and L1 must both have N poles at s 0,
that is, must contain N integrators.

. . .

k1

1p(t)

k2 k 1

l1(t) l2(t) l 1(t) l (t)

k

1 1 1

l (t) l [n]

Figure 8.20 A possible realization of L1 .

A possible realization of L1 (s) is shown in Figure 8.20. It can be expressed as a
linear combination of paths of the form 1 s , with i 1 N . The gain coefficients
of these paths k1 k must be chosen so that the filter’s sampled output when driven
by the DAC pulse p(t) matches l [n], the impulse response corresponding to L1(z). A
systematic way of determining coefficients is the following.

a. From the desired NTF, determine L1(z) 1 NTF(z) 1

b. Find l [n], the impulse response corresponding to L1(z)

c. Determine the pulse responses of the individual 1 s paths x [n] x (t) for i

1 N .

d. Solve x1 x2 x

k1
k2

k

l . The x ’s and l are column vectors. The

system of equations is overdetermined; however, as in CT-MOD2, the equations admit
a unique solution.

e. One way of realizing L0 is to add u to the DAC’s output as shown in Figure 8.21.
This satisfies the requirement that L0 must equal L1 as s 0. The loop-filter’s
output is sampled, quantized, and fed back through the DAC. Since the loop-filter is a
cascade of integrators with feedforward, this corresponds to a CIFF CT M, where
L0 (s) L1 (s).
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. . .

ADC [n]

k1

1

k2 k 1

l1(t) l2(t) l 1(t) l (t)

k

1 1 1

u(t)
p

(t
)

Figure 8.21 Completing the loop and adding u to realize an N th order CIFF CT M.

The STF of the modulator of Figure 8.21 can be found by using the same process we
applied to CT-MOD1, and not surprisingly, this yields

STF( f ) L0 ( j2 f )NTF(e 2 ) (8.24)

The dc gain is unity, and thanks to the nulls of the NTF, the STF has excellent rejection
around all integer multiples of the sampling rate that is commensurate with the in-band
attenuation provided by the NTF.

8.4.1 Influence of DAC Pulse Shape [4]

Earlier in this chapter, we discussed the effect of DAC pulse shape on the NTFs of CT-
MOD1 and CT-MOD2, assuming that the pulse died down after 1 s. We found that the
former was agnostic to pulse shape as long as its area was unity, while the latter’s NTF
depended only on two features of the pulse shape – namely, its area and delay. What
happens in an N th order modulator?

For simplicity, we first consider a three-integrator chain, whose impulse response
is (t2 2)u0(t), where u0(t) denotes the unit step function. The output x3(t), for t 1,
obtained by convolving the impulse response with p(t), is given by

x3(t) p(t)
t2

2
u0(t)

1

0
p( )

(t )2

2
u0(t )d t 1 (8.25)

This simplifies to

x3(t)
1

0
p( )d

t2

2

1

0
p( )d t

1
2

1

0

2p( )d t 1

As seen above, the pulse response at the output of the chain is a polynomial in t, with
coefficients dependent only on the details (or features) of p(t). These are the moments of
the pulse, defined as follows.
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DAC type Laplace 0 1 2 3
transform

1

δ(t)

0 1 1 0 0 0
Impulse

1

1

0 1 1 1
2

1
3

1
4

NRZ

1

2

0 2 1 2
1 1

4
1
12

1
32

RZ

10

1/τd

1
1 1 2 2 6 3

Exponential

Table 8.2 Moments of some commonly used pulses.

0

area
0

p( )d

1

0 delay
0

p( )d

2
0

2p( )d

0
p( )d

Here 0 is the area (or “mass”) of the pulse, 1 0 is the average delay (or the “center
of mass”), 2 0 is the “moment of inertia”, and so forth. Since the duration of p(t) is
1 s, the upper limits of the integrals above can be replaced by 1. The moments of some
commonly used DAC pulses are given in Table. 8.2.

Rewriting the equation above using the moments of p(t), we obtain

x3(t) 0
2

t2
1t

2
2

t 1 (8.26)

From the discussion above, we observe that the output x3(t) (and therefore, the samples
x3[n]) are only dependent on three moments of p(t), for t 1.

In general, the pulse response of the 1 s path, denoted by x (t), is given by

x (t)
t ( 1)u1(t)

(N 1)!
p(t)

1
(N 1)! 0

p( )(t )( 1)d (8.27)
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For t 1, this simplifies to

x (t)
1

(N 1)!

1

0
p( )(t )( 1)d

1

0

( 1)
(N 1)!

N 1
l

t 1 (8.28)

indicating that the sampled pulse response depends only on N features of p(t), namely the
0 (N 1) moments of the pulse.

Since the sampled pulse response of the N th order loop-filter is given by

[n]
1

k x [n] (8.29)

it must follow that the N th order NTF is completely determined by the N moments of p(t).
In other words, the NTF remains the same, even if the DAC pulse shape is modified, as
long as the 0 (N 1) moments remain unchanged. What is the practical utility of this
observation? To see this, we examine the following problem. Suppose that the continuous-
time loop-filter transfer function that resulted in a desired NTF was known, for a given
DAC pulse shape p(t). What would the transfer function have to be to achieve the same
NTF, if the pulse shape was modified to q(t), as shown in Figure 8.22?

(a)

(b)

k1

0 1

1

x3

p(t)

x1 x2

k2 k3

1

k1

[n]

0 1

1

x3x1 x2

k2 k3

(t) [n]

1 1

1 1 1

q(t)

(t)

Figure 8.22 How should the coefficients of the loop-filters be related, so that both modulators have
the same NTF?

This is illustrated with our third-order example below. In the discussion that follows,
we denote the coefficients when the DAC pulse is p(t) by k1 k3 , and the correspond-
ing moments by 0 2 . We have, for t 1,

x3(t)
0

2
t2

1 t
2

2
x2(t) 0 t 1

x1(t) 0
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The loop-filter output is given by

(t)
k3 0

2
t2 (k2 0 k3 1 )t k1 0 k2 1

k3 2

2

When the pulse is modified to q(t),

(t)
k3 0

2
t2 (k2 0 k3 1 )t k1 0 k2 1

k3 2

2

If the area of the pulses is chosen to be the same, so that 0 0 1 the equations
above can be simplified as follows.

(t)
k3

2
t2 (k2 k3 1 )t k1 k2 1

k3 2

2

(t)
k3

2
t2 (k2 k3 1 )t k1 k2 1

k3 2

2

If the NTFs have to be the same, (t) (t) for t 1, resulting in

k3 k3

k2 k2 k3 1 1

k1 k1 1 1 (k2 1 k3 )
k3

2 2 2 (8.30)

If the zeroth, first, and second moments of p(t) and q(t) are equal, then the same co-
efficients can be used for both DAC pulses – in line with the discussion earlier in this
section. In a practical N th order NTF (where out-of-band gains are restricted to values
much smaller than 2 ), it turns out that the coefficients of the 1 s paths for i 3 are
small. In the third-order example above, therefore, k3 k2 k1 . Then, from (8.30)
we see that if p(t) and q(t) were chosen so that only their zeroth and first moments were
the same, the NTFs should remain largely similar even if 2 2 .

The observation above has the key implication that the NTF of a practical high-

order CTDSM is largely insensitive to the exact nature of the pulse shape, as long

as the area and the delay (“center of mass”) remain the same.

Simulation results given below for a fourth-order modulator confirm the intuition
gained using our analysis. Figures 8.23(a) and (b) show the discrete-time prototype and the
CIFF implementation of the CT M, respectively. NTFs were determined for four DAC
pulse shapes – the NRZ, delayed RZ, raised cosine, and the delayed impulse. All these
pulses have the same area and average delay, resulting in 0 1 and 1 0 5. Maximally
flat NTFs with out of band gains of 1.5 and 3, respectively, were used as examples. The
out-of-band gains (OBG) represent the limits used in practice – the former for single-bit
designs, and the latter being a typical upper limit for a multi-bit design. The coefficients
of the discrete-time modulator and the corresponding CT M s (with an NRZ DAC) are
given in Table 8.3.

CT M coefficients computed assuming an NRZ DAC were used to determine the
NTF with all the pulse shapes of Figure 8.23. Figure 8.24 shows the NTFs, where we
see that they are largely unchanged, even for seemingly drastic changes in the DAC pulse.



HIGH-ORDER CONTINUOUS-TIME DELTA-SIGMA MODULATORS 245

NRZ DAC RZ DAC    Raised 
Cosine DAC

t10

p(t)

0 1 t

p(t)

0 1 t

p(t)
1

2 2

0 1 t

p(t)

2

-

. . .

 Impulsive
 (SC) DAC

-

. . .

(a)

(b)

k1

1

1 1
1

1 1
k

u

k1

k

1

p(t)

u
1

Figure 8.23 (a) The discrete-time prototype and (b) CT- modulators with various feedback
DAC pulses – all pulses have the same area and delay.

Pulse/OBG k1 k2 k3 k4
DT (CRFF) -/1.5 0.5556 0.2500 0.0524 0.0061

CT M NRZ/1.5 0.6713 0.2495 0.0555 0.0061
DT (CRFF) -/3.0 1.1994 0.8890 0.5423 0.1584

CT M NRZ/3.0 1.3851 1.1862 0.6215 0.1584

Table 8.3 Fourth-order modulator coefficients for maximally-flat NTFs, with OBGs of 1.5 and 3.
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The NTF magnitudes are virtually indiscernible when OBG 1 5, and are only slightly
different with OBG 3. This makes sense due to the following. The magnitude of an N th-
order NTF at low frequencies is approximately k , where k is the gain of the 1 s

path of L1 . Since a higher OBG means lower in-band gain for the NTF, k increases
with increasing OBG, as confirmed by Table. 8.3. From (8.30), it is apparent that if k1
was incorrectly chosen to be k1 , then this coefficient would be in error by a quantity
proportional to k4 (which increases with OBG). It therefore follows that the NTF would
be less sensitive to the pulse shape when its out of band gain is small.

0

3

2 5

2

1 5

1

0 5

0 1 0 2 0 3 0 4 0 5
f f

N
T

F

Figure 8.24 NTFs for fourth-order CT Ms with OBG 1 5 and OBG 3 – the same coefficients
(corresponding to those with an NRZ DAC) are used with all pulse shapes.

In this section, we discussed a systematic procedure to determine the transfer function
of the loop-filter of a CT M, given a desired NTF. As can be expected from our experi-
ence with realizing CT-MOD1 and CT-MOD2, the loop-filter can be implemented in many
ways, while still realizing the same NTF. We will consider some of these next.

8.5 Loop-Filter Topologies

8.5.1 The CIFB Family

ADC

Fast Loop

u 1

k2k3 p
(t

)

k1

1
k3

p
(t

)

1

p
(t

)

Figure 8.25 A third-order CT M realized as a CIFB structure.

We begin our discussion with the third-order CT M realized as a Cascade of Inte-
grators with Feed Back (CIFB), shown in Figure 8.25. As in the discrete-time case, three
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DACs are necessary. The “fast path” around the loop is through the innermost DAC, with
coefficient k1, while the “precise path” is through the DAC with weight k3. The CIFB
structure, therefore, decouples the fast and precise parts of the loop. This is a useful at-
tribute, especially when clock rates are high. Inspection of Figure 8.25 reveals that

L0 (s)
k3

s3

L1 (s)
k3

s3
k2

s2
k1
s

The STF, given by L0 ( j2 f )NTF(e 2 ), rolls of as 1 f 3 at high frequencies. In ap-
plications (like wireless transceivers) where the modulator may be subject to input signals
with significant out of band content, the inherent band limiting of the CIFB structure is an
advantage, as it can potentially simplify the design of the filter that precedes it.

What are the disadvantages of the CIFB structure that motivate the search for other
ways of realizing the loop-filter? As in the discrete-time case, the output of every integra-
tor consists of the input component. The reasoning is the following. The low-frequency
content of the input of every integrator must be very small. This means, unfortunately, that
the output of every preceding integrator must contain a large input component, so as to
nullify the input component injected by the feedback DAC. For instance, the only way for
the dc content of the second integrator’s input can be zero is if the dc output of the input in-
tegrator “balances” the dc output of the second DAC (whose weight is k2). Consequently,
the output of this integrator must consist of k2 u in addition to shaped quantization noise.
In a similar fashion, the output of the second integrator must contain u with strength k1.
This is problematic on two counts. After dynamic-range scaling, whose motivation we
discussed in detail with reference to the discrete-time case, the unity-gain frequency of the
first integrator becomes small. Since a small unity-gain frequency means reduced gain in
the signal band, the effects of noise and distortion further down the loop-filter are not ad-
equately attenuated when referred to the modulator’s input. The low unity-gain frequency
also necessitates a large integrating capacitor in the input integrator, increasing the area
occupied by the modulator.

ADC

Fast Loop

u 1

k2k3 p
(t

)

k1

1
b3

p
(t

)

1

p
(t

)

b1b2 b0

Figure 8.26 A CIFB structure with input feed-ins.

Recognizing the root cause of the CIFB loop’s problems to be the input component
injected by the feedback DACs at the outputs of the first and second integrators, it is ap-
parent that assisting the integrators by adding input feed-ins should mitigate the problem.
Figure 8.26 shows the CIFB CT M with feed-ins. If the integrator outputs have to be
devoid of the input component (assumed to be dc), b0 1 b1 k1 and b2 k2. As the
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input frequency increases, the “assistance” offered by the feed-in paths is not perfect, since
(and therefore the DAC feedback waveforms) consists of a phase shifted version of u.

With feed-ins,

L0 (s)
b3

s3
b2

s2
b1
s

b0 (8.31)

The STF at high frequencies is now b0NTF(e 2 ). The price to be paid to address the
drawbacks of the CIFB structure is apparently the loss of the filtering nature of the STF.

8.5.2 The CIFF Family

ADCu 1

p
(t

)

k3

1 1

k2

k1

Figure 8.27 A third-order CT M, with the loop-filter realized as a CIFF structure.

The loop-filter can also be realized as a cascade of integrators with feedforward
(CIFF) structure, shown in Figure 8.27. Such a design needs only one feedback DAC.
Further, the outputs of all integrators except the last are devoid of the input, which re-
sults in reduced output swings when compared with their CIFB counterparts. This, after
dynamic-range scaling, translates into a high unity-gain frequency for the input integrator.
This is beneficial, as nonidealities like noise and distortion added further down the loop
are smaller when referred to the modulator’s input. Faster integrators also means lower
capacitor values in the loop-filter, saving area. There is a price to be paid for these benefits.
Referring to Figure 8.27, we see that

L0 (s) L1 (s)
k3

s3
k2

s2
k1
s

(8.32)

indicating that the STF can roll off only as 1 f at high frequencies. It is straightforward to
see that for the same NTF, the STFs of the CT Ms of Figures 8.25 and 8.27 are related
as

STFCIFF (s) 1
k2
k3

s
k1
k3

s2 STFCIFB(s) (8.33)

This makes intuitive sense – adding feedforward paths introduces zeros in the transfer
function. The STF of a CIFF modulator, therefore, peaks outside the signal band, which
can be problematic in wireless applications. A further disadvantage, stemming from the
fact that a CIFF design needs only one DAC, is that the “fast” and “precise” paths of the

loop have the input integrator and DAC as constituents. This could be troublesome
in high-speed designs: the necessity of having to close the loop favors simple circuitry
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(single-stage amplifiers and small DAC delays), which is at odds with ways of achieving
high linearity (multi-stage, high-gain amplifiers and special techniques to linearize the
feedback DACs).

8.5.3 The CIFF-B Family

A particularly useful topology, that combines the benefits of the CIFF and CIFB loops is
the CIFF-B structure, named (rather unimaginatively) after its parents.

ADC

Fast Loop

u 1

k2 k3

k3 p
(t

)

k1

1
k3

1

p
(t

)

Figure 8.28 The CIFF-B loop-filter structure.

For this structure (Figure 8.28), we see that

L0 (s)
k3

s3
k2

s2 (8.34)

leading us to conclude that the STF rolls of as 1 f 2 at high frequencies. The STF is not
quite as good a filter as in the CIFB case, but is not as “peaky” as that associated with a
CIFF CT M. As in the CIFB case, the fast and precise loops are decoupled, which is
beneficial in high-speed designs. Due to the feed-forward path, the low-frequency swing
at the output of the first integrator is small. This means that, after dynamic range scaling,
the unity-gain frequency of the input integrator is larger than in the CIFB structure. This
results in reduced distortion and noise from the rest of the loop-filter when referred to the
input, as in a CIFF CT M.

8.6 Continuous-Time Delta-Sigma Modulators with Complex NTF Zeros

While discussing the properties of NTFs in Chapter 4, we found that spreading the zeros of
the NTF across the signal band (rather than bunching them all at dc) improves the in-band
SQNR. The optimal locations of the zeros were obtained by minimizing the in-band noise
with respect to those zeros. The optimal NTF zeros, being on the unit circle, are of the
form z e The poles of the continuous-time loop-filter, based on our reasoning in
Section 8.1, are thus located at

p ln(z ) j (8.35)

Since complex NTF zeros appear in conjugate pairs, it follows that the continuous-time
loop-filter must have conjugate poles on the imaginary axis of the s-plane; implemented as
a resonator by adding a negative feedback loop around two integrators.
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Figure 8.29 A third-order CRFB CT M . The feedback through 2 implements the complex
NTF zeros.

Figure 8.29 shows a third-order CT M based on multiple feedback paths, imple-
menting complex NTF zeros. Such loop-filters are called Cascade of Resonators with Feed
Back (CRFB) structures. CRFF and CRFF-B modulators can be derived in an analogous
fashion.

8.7 Modeling of Continuous-Time Delta-Sigma Modulators for Simulation

Taking a cue from discrete-time modulators, it would appear that a state-space description
of the loop-filter is the most apt way of representing a CT M for simulation. This is
true, but there is more to this than meets the eye. We illustrate this with the second-order
example shown in Figure 8.30. The outputs of the two integrators are the states, denoted
by x1 and x2. From the figure, we have

ADCu 1

k1k2 p
(t

)

1
b2

p
(t

)

b0b1

x1x2

Figure 8.30 Example second-order CT M illustrating state-space representation.

ẋ1 x2 b1u k1

ẋ2 b2u k2

x1 b0u



MODELING OF CONTINUOUS-TIME DELTA-SIGMA MODULATORS FOR SIMULATION 251

In matrix form,

ẋ1
ẋ2

derivative of state

0 1
0 0

x1
x2

present state

b1 k1
b2 k2

u

inputs

1 0 x1
x2

b0 0 u

The dimensions of the matrices for an N th order modulator are the following.

A : N N B : N 2 C : 1 N D : 1 2

How does one simulate a loop that operates both in the continuous-time and sampled
domains? One approach is to realize that rather than entire waveform (t), the output
depends on its sampled version [n]. If the input is slowly varying, and assuming an NRZ
feedback DAC pulse, the operation of the continuous-time loop-filter can be discretized
as illustrated in Figure 8.31. Part (a) of the figure shows a slowly varying u(t) and its
zero-order-held (ZOH) approximation. The latter can be expressed as

û(t) u[n]p(t n) (8.36)

where p(t) is an NRZ pulse, and u[n] is the sequence obtained by sampling u(t) at 1 Hz
(recall that the sampling rate of the modulator is also 1 Hz). û(t) can be thought of as the
output of a filter with impulse response p(t), excited by u[n]. Referring to Figure 8.31(b),
we see that the continuous-time loop-filter is excited by two sequences u[n] and [n], and
samples of its output (t) are of interest. The system enclosed in the box is evidently a
linear one, with two discrete-time sequences as inputs, and an output sequence [n]. In
principle, therefore, it can be replaced by a discrete-time system, whose state matrices
are denoted by A B C and D . Given the state matrices of the continuous-time loop-
filter, determining the DT state representation is straightforward, as we see below. The
continuous-time filter is governed by

ẋ(t) A x(t) B
u(t)

(t) (8.37)

(t) C x(t) D
u(t)

(t) (8.38)

The natural response of the states is e . u(t) is approximated by its piecewise-constant
cousin û(t), and (t) is piecewise-constant anyway due to the NRZ pulse. Then, the states
at time (n 1) can be related to x[n] and u[n] [n] in the following manner.

x[n 1] e x[n]
1

0
e B

u[n]
[n] d

convolution integral

e x[n] A 1(e I)B
u[n]
[n] (8.39)

The first term in the equations above represents the evolution of the states from n to (n 1),
while the second represents convolution of the piecewise-constant inputs with the impulse
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(t) [n]
A B

C D

u[n]

A B

C D

u[n]

[n]

[n]

[n]

1 20 43

u(t) ZOH approximation

(a)

(b)

Figure 8.31 (a) A slowly varying u(t) is approximately the same as its ZOH version û(t). (b) The
continuous-time loop-filter and the two NRZ DACs can be replaced by its discrete-time equivalent.

responses from u and to the states. I denotes an (N N ) identity matrix. The output at
time n is given by

[n] C x[n] D
u[n]
[n] (8.40)

From (8.39) and (8.40), we see that the state matrices of the equivalent discrete-time sys-
tem are given by

A e

B A 1(e I)B

C C

D D (8.41)

Since the CT M has now been discretized, it can be simulated by the very same routines
used for a discrete-time modulator.

How does the preceding discussion change when the pulse shape of the feedback
DAC is modified? In that case, (8.39) can be rewritten as follows, where B is expressed as
[B 1 B 2]. B 1 and B 2 are the first and second columns of B , and affect the state transfer
functions from u and , respectively. pdac(t) denotes the DAC pulse shape and is assumed
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to be 0 beyond t 1.

x[n 1] e x[n]
1

0
e B 1u[n] d

convolution integral

1

0
e B 2pdac(1 ) [n] d

convolution integral

e x[n] A 1(e I)B 1

1

u[n]
1

0
e B 2pdac(1 ) d

2

[n]

(8.42)

From the equations above, it is seen that incorporating arbitrary feedback DAC pulses is
straightforward, where all that is needed is to modify B in (8.41) according to

B B 1 B 2 (8.43)

where the first and second columns of B are given by [2, 5]:

B 1 A 1(e I)B 1

B 2

1

0
e B 2pdac(1 ) d

8.8 Dynamic-Range Scaling
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Figure 8.32 A third-order CIFF CT M: every integrator generates noise, modeled by an input-
referred noise source.

Consider the third-order CIFF CT M of Figure 8.32, excited by a low-frequency
input u, whose amplitude is chosen to be close to the MSA of the modulator. We assume
that the number of quantizer levels is large. The loop-filter’s output consists of u and
shaped noise. What observations can we make regarding the states x1, x2, and x3? The
low-frequency component of must largely be the contribution of the third-order path of
the loop-filter: thus, k3x3 u. Since k3 1 (to ensure a large MSA in relation to full
scale), it must follow that the peak swing of x3 must greatly exceed the modulator’s full
scale. On the other hand, the peak-to-peak swing of x1, which is the integrated version of
shaped quantization noise, is bound to be much smaller than full scale. The reason is the
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following. Since we assumed many quantizer levels, the peak-to-peak swing contributed
by shaped noise at (and ) is only a few levels. This must be the contribution of the fast
(1 s) path of the loop-filter. Since k1 is of the order of unity, it follows that x1s swing has
to be small. In an ideal world (without noise, and with infinite supply voltages), the large
differences in the peak-to-peak swings of the states is of no consequence.

However, we need to consider two practical realities. First, every integrator gener-
ates thermal noise, modeled as an input-referred noise source in Figure 8.32. Next, every
integrator will saturate if its output attempts to exceed a certain threshold. This is a con-
sequence of the limits enforced by the (finite) supply voltage. There are many choices of
the loop-filter internal states that result in the same input–output transfer function. For in-
stance, the CT M of Figure 8.33 has the same NTF and STF as the design in Figure 8.32.
However, the state x̂1 in the former is a scaled version (by a factor ) of the state x1 in the
latter. This is accomplished by increasing the gain of the first integrator by , and reducing
the gains of all blocks that sense x̂1 by the same factor. This way, the transfer function and
the other states of the loop-filter remain unchanged.

Since is arbitrary, a good question to ask is if there is method to choosing it. What
happens, for instance, if is too small? Referring to Figure 8.33, we see that this mandates
a large gain k1 from x̂1 to , thereby greatly amplifying the input-referred thermal noise
of the gain element. This suggests that should be chosen to be large to reduce thermal
noise at the loop-filter’s output.

Now, what if was made too large? This is problematic too, since the integrator
will saturate if its output attempts to increase beyond a certain limit (dictated by the sup-
ply voltage). When an integrator saturates, its output no longer responds to changes in its
input, effectively cutting it out from the modulator. Given our experience with the delete-
rious effects of quantizer saturation, one should expect that a saturating integrator is most
likely to destabilize the modulator. The conclusion from the discussion above is that one
should always attempt to keep the state variables as large as possible in magnitude, while
avoiding saturation. This way, thermal noise from the loop-filter is amplified to the least
extent possible. Further, increasing the gains of the integrators increases their unity-gain
frequency, and reduces the capacitance needed for their implementation. This results in a
reduction in the active area occupied by the CT M. Scaling the states in a manner that
they are as large as possible (without being any larger!) is called dynamic-range scaling,
and this should be an integral part of the design process.

ADC

D
A

C

1

k2

x3

x2

x̂1 x1

k3

1 1u

Figure 8.33 Scaling x1 by without affecting the loop-filter’s transfer function.
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As we saw above, dynamic-range scaling does not affect the input–output behavior of
the filter. How does this reflect in its state-space description? The original state equations
are

ẋ(t) A x(t) B
u(t)

(t) (8.44)

(t) C x(t) D
u(t)

(t) (8.45)

We denote the scaled states by x̂. Since each state can be scaled by a different factor,
x̂ T x, where T is a diagonal transformation matrix. Thus, x T 1 x̂. Substituting this in
the state equations above, we obtain

T 1 ˙̂x A T 1 x̂ B
u

C T 1 x̂ D
u

The state matrices of the scaled loop-filter are thus seen to be

Â T A T 1 B̂ T B Ĉ C T 1 D̂ D (8.46)

8.9 Design Example

In this section, we illustrate the concepts we have discussed so far by attempting the de-
sign of a third-order CT M whose NTF is maximally flat, with OBG 2 5. The modu-
lator employs a 16-level quantizer and operates with OSR 64. The signal bandwidth is
500 kHz. We assume that a CIFF loop-filter and an NRZ DAC are used. We make extensive
use of the toolbox. We proceed in the following step-by-step fashion.

a. Determine the NTF.
ntf = synthesizeNTF(3,64,0,2.5,0)
which yields

NTF(z)
(z 1)3

(z 0 417)(z2 0 8778z 0 3804)

b. Next, we determine L1(z) 1 NTF(z) 1
L1 = 1/ntf - 1
which yields

L1(z)
1 7052(z2 1 322z 0 4934)

(z 1)3

c. We then determine the impulse response l of the DT loop-filter
l = impulse(L1,10);

d. L1 (s) is of the form 1 2
2

3
3 . We need to determine k1, k2, and k3.

e. We first find the pulse response samples (x1 x2 x3) of the 1 s, 1 s2 and 1 s3 paths.
x1 = impulse(c2d(tf([1],[1 0]),1),10);
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x2 = impulse(c2d(tf([1],[1 0 0]),1),10) ;
x3 = impulse(c2d(tf([1],[1 0 0 0]),1),10);

f. Determine K k1 k2 k3 by solving x1 x2 x3 K l

K = [x1 x2 x3] l;
This yields k1 1 2244, k2 0 8638, k3 0 2930.

ADCu

p
(t

)

[n]1

k1

x1 1
x2

1

k2

x3

k3

[n]

Figure 8.34 Third-order CT M. x1 x2 x3 are the state variables.

g. The loop-filter is a CIFF design (Figure 8.34), and we describe it in state-space form
as follows.

A

0 0 0
1 0 0
0 1 0

B

1 1
0 0
0 0

C k1 k2 k3 D 0 0

h. Next, we create the CT loop-filter
sys_ct=ss(Ac,Bc,Cc,Dc);
and determine the corresponding discrete-time loop-filter.
sys_dt=c2d(sys_ct,1);
This yields

A

1 0 0
1 1 0

0 5 1 1
B

1 1
0 5 0 5

0 1667 0 1667

C 1 225 0 864 0 293 D 0 0

i. We then simulate the difference equations describing the modulator.
The sinusoidal input is at one-fourth the signal bandwidth, with an amplitude of 0.8
times full scale.
u = 0.8*15*sin(2*pi*(0.25/OSR)*(0:1:2ˆ15));
ABCD = [Ad Bd; Cd Dd];
[v,xn,xmax,y] = simulateDSM(u,ABCD,16,zeros(3,1));
simulateDSM yields , the final states xn, their maxima xmax, and the sampled
loop-filter output .

j. The power spectral density (PSD) of is shown in Figure 8.35.
psd(v,Nfft, fs, hanning(Nfft,’periodic’));
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Figure 8.35 Power spectral density of the output sequence.

The quantization noise seems shaped, as we expect. But how do we know that the
NTF is indeed the one that we set out to realize? The problem with inferring the NTF
(shape and OBG) by eyeballing the PSD is its noisy nature, arising due to the noise-
like properties of the quantization error. In simulation, however, this error is explicitly
available, since we have access to both and . A useful “trick” to eliminate noise
in the PSD (during simulations), and thereby verify the NTF, therefore, is to divide
PSD( ) by PSD( ). This should yield NTF(e ) 2 without noise, as we see next.

k. Verify the NTF
[P1,f]= psd(v,Nfft, fs, hanning(Nfft,’periodic’));
[P2,f]= psd((v-y),Nfft, fs, hanning(Nfft,’periodic’));
plot(f,10*log10(P1./P2);
The resulting NTF, plotted on a dB scale, is shown in Figure 8.36. Determining
NTF(e ) 2 as PSD( ) PSD( ) clearly places in evidence the nature of the NTF,

and allows one to accurately determine OBG.

150

100

50

0

0 0 1 0 2 0 3 0 4 0 5

f f

NT
F

(d
B

)

OBG 2 5

Figure 8.36 Determining the NTF by computing PSD( ) PSD( ).

l. Finally, we scale for dynamic range and frequency.
simulateDSM also yields the maxima of the states, which turn out to be x1
2 605, x2 2 905 and x3 43 32. (Recall that the DAC output can go
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from 15 to 15). Assuming that we would like to limit the magnitude of the states to
10, 12, and 14, respectively, it is straightforward to see that the integrator unity-gain
frequencies should be scaled by 4 6 0 89, and 0 067, respectively.
Further, the integrator outputs should now be weighted by k̂1 0 26 k̂2 0 21, and
k̂3 1 05, as shown in Figure 8.37. Finally, to operate with a sampling frequency f ,
the bandwidths of all integrators are multiplied by f .

ADCu

p
(t

)

k̂3

k̂2

k̂1

x̂1

x̂2

x̂3

Figure 8.37 The third-order CIFF modulator, after dynamic range and frequency scaling.

8.10 Conclusions

In this chapter, we discussed the basic ideas and attributes of continuous-time delta-sigma
modulation. The philosophy behind a CT M is to emulate the behavior of the loop-filter
in a discrete-time converter using continuous-time circuitry. This is accomplished by
choosing the CT loop-filter to be impulse-invariant with respect to the DT prototype. By
virtue of sampling occuring inside the loop, CT Ms feature implicit anti-aliasing. As
with DT converters, many choices exist for the realization of the loop-filter – each with
its associated trade-offs. Finally, we saw how a CT M can be simulated by discretizing
the continuous-time loop-filter, so as to leverage the tools already designed to simulate
discrete-time converters.
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CHAPTER 9

NONIDEALITIES IN CONTINUOUS-TIME
DELTA-SIGMA MODULATORS

In the previous chapter, we understood the fundamental principles of continuous-time
modulation. In particular, we learned how one could design a continuous-time loop-

filter that results in a desired NTF. Unfortunately, many of the assumptions we made re-
garding the operation of the modulator are not true in practice. For example, no real quan-
tizer can make a decision instantaneously – there must be a delay associated with it. The
ADC thresholds and DAC levels will deviate from their desired values due to element
mismatch. Integrators in the loop-filter are not ideal either. In the most optimistic case,
component inaccuracy shifts the unity-gain frequencies. More realistically, the integrators
have finite dc gain, and their transfer functions have parasitic poles and zeros. Since they
are built with transistors, the integrators are also somewhat nonlinear.

Finally, any practical sampling clock will be jittery. While one might argue that clock
jitter is “not the CT M’s problem,” it turns out that the choice of modulator architecture
has a dramatic impact on how it responds to jitter. This, therefore, warrants a detailed
study. In this chapter, we examine the primary nonidealities in a CT M – namely excess
delay, time-constant variations, and clock jitter, and discuss how to address these problems.

9.1 Excess Loop Delay

So far in this book, we have considered the quantizer as having zero delay, so that the
quantized output is available at the same instant at which the input is sampled. In practice,
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t
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t ADC delay + DEM logic delay + DAC setup time

DEM logic

Figure 9.1 The excess delay problem in continuous-time modulators.

however, there is a delay due to the following. As seen in Figure 9.1, the quantizer is
implemented as a cascade of an ADC followed by a DAC. The former samples the loop-
filter’s output on the rising edge of its clock, denoted by clk_adc. As described in Section
7.9, a nonzero time is needed to resolve the analog input, and the output sequence of the
ADC is only available after a delay. The DAC, which converts the ADC output sequence
back into a waveform, can therefore only be clocked at a later time, as shown in the figure.
As we saw in Chapter 6, it is common to insert digitial circuitry (called dynamic element
matching (DEM) logic)) between the ADC and DAC to shape mismatch-induced noise
out of the signal band. The delay t of the DAC clock with respect to the ADC clock,
therefore, should be large enough to accommodate the delay of the ADC and DEM plus
the DAC setup time. In most cases, the DAC needs to be explicitly clocked to prevent
the variable nature of the regeneration and propagation delays from introducing unwanted
jitter.

Before getting into a detailed analysis of the effects of excess loop delay, let us ponder
what delay will do. Like in any feedback loop, adding delay is bound to degrade modulator
stability. We should also expect that high-order loops fare worse than loops with low order.
Finally, since the magnitude of the loop-gain does not change with delay, we expect that
quantization noise suppression within the signal band should not be affected (provided, of
course, that the modulator remains stable).

9.1.1 CT-MOD1 : The First-Order Continuous-Time Delta-Sigma Modulator

Consider the normalized first-order CT M, with an excess delay t , as shown in Fig-
ure 9.2. An NRZ DAC is assumed. The pulse response of the loop-filter is obtained by
breaking the loop and sampling the output of the integrator. It is seen to be

l[n] 0 1 t 1 1
0 1 1 1
ideal response

0 t 0 0
error

(9.1)
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NRZ

e[n]

u(t) [n]1 (t) [n]

1

t

l (t)

t 2 3

(t)

t

1

p(t)

t

ideal output

Figure 9.2 CT-MOD1 with delay t .

The loop-gain L(z) l[n] and NTF are given by

L(z)
z 1

1 z 1 t z 1

NTF(z)
1

1 L(z)
1 z 1

1 t z 1 t z 2

From these expressions, it is apparent that the order of the system has now increased
to two, with the pole locations depending on t . Analysis shows that the modulator poles
move toward the unit circle as delay increases, and lie on the unit circle when t 1, as
shown in Figure 9.3. The onset of instability as delay increases is hardly surprising. Addi-
tionally, we see that in the signal band, the magnitude of the NTF remains (independent
of t ), as we intuitively expected.

z-plane

t 0

t 1

t 1

z 1

Figure 9.3 Locus of pole locations of a first-order CT M as a function of excess loop delay (t ).

While analyzing the influence of delay on CT-MOD1 is informative, a more fruitful
exercise is to understand how one can mitigate the effects of excess delay. From (9.1),
we see that adding a path whose sampled pulse response is 0 t 0 0 0 in parallel
with the integrator can restore the loop’s NTF. One way of realizing the parallel path is to
simply have a gain t as shown in Figure 9.4. From our experience with circuits, we realize
that this is not so surprising after all – a feedforward path adds a “zero” to the loop-gain
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function, thereby improving phase margin, and stabilizing the system. It is important to
note that only the samples of the compensated loop-filter are equal to ideal samples (i.e.,
without delay) – this is not true of the continuous-time waveform at the loop-filter’s output.
Incorporating the direct path into the modulator leads to the systems shown in Figure 9.5.

1
t

l1(t)

t 2 3 l (t)

t
2 31

t
2 3

l2[n]

1

t

+t 1 t

k ?

p(t t )

t

1

1

1

Figure 9.4 Using a direct path across the integrator to mitigate excess delay.

The specific implementation shown in part (b) of the figure is commonly used – with the
shaded portion being referred to as the “direct feedback path around the quantizer”. Note
that since the direct feedback is sampled, the DAC that implements this path does not need
to be clocked.

u(t) [n]1

k t
k

e[n]

[n]1

k t
k

u(t)

tp(t)

tp(t)

tp(t)

e[n]

(a)

(b)

Figure 9.5 Alternative implementations of the direct path in CT-MOD1.

The shape of the DAC pulse influences the sampled response of the loop-filter. Other
commonly used pulses are the return-to-zero (RZ) and impulsive shapes. From Figure 9.6,
it is seen that the RZ DAC can tolerate half-clock cycle delay, while the impulsive DAC
can tolerate almost a whole-clock cycle.
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Figure 9.6 Insensitivity to excess delay using other pulse shapes (a) RZ and (b) impulse.

9.1.2 CT-MOD2 : The Second-Order Continuous-Time Delta-Sigma Modula-
tor

DAC

e[n]

u(t) [n]1

p(t)

t

1

1 5

Figure 9.7 A second-order CT M with excess delay.

Next, we analyze the effect of excess delay in a second-order modulator with an NRZ
DAC, shown in Figure 9.7. Ideally, t 0, and NTF(z) (1 z 1)2, which corresponds
to a loop-gain function L(z) (2z 1) (z 1)2. The transfer function of the loop-filter is

L (s)
1 5
s

1
s2 (9.2)

With excess delay, the z-transforms of the sampled pulse responses of the 1 s and 1 s2

paths are given by

1
s

1 t

z 1
z 1 t

z 1
(9.3)

1
s2

(0 5 t 0 5t2 )z 0 5(1 t2 )

(z 1)2 z 1 t (1 0 5t )z 0 5t2

(z 1)2 (9.4)
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L(z) and the NTF can be determined as functions of t from the equations above. As in
the first-order case, excess delay causes the order of the system to increase by 1. The locus
of the roots as t changes, shown in Figure 9.8, indicates that the modulator is unstable
for delays greater than 30% of the clock period, with the MSA reducing dramatically as t

approaches 0 3.

z-plane

t 0

t 0 3

t 0 3

z 1

Figure 9.8 Locus of the poles of a second-order CT M as t changes.

From the discussion above, it is clear that a second-order modulator is a lot less tol-
erant of loop delay compared to a first-order design. How does one restore the NTF of the
second-order loop? Using the first-order case as inspiration, we add a direct path around
the quantizer with gain k̂0, as shown in Figure 9.9. As usual, the sampled pulse response
of the loop-filter should equal the impulse response of the discrete-time prototype L(z).

The sampled responses of the direct, 1 s and 1 s2 paths are given by

Direct path z 1

1
s

1 t

z 1
z 1 t

z 1
1
s2

(0 5 t 0 5t2 )z 0 5(1 t2 )

(z 1)2 z 1 t (1 0 5t )z 0 5t2

(z 1)2

DAC

D
A

C

e[n]

u(t) [n]1

p(t)

t

1

k̂1

k̂0 1 5t 0 5t2

1 5 t

p(t)

Figure 9.9 Restoring the NTF of a second-order CT M using a direct path.
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To restore the NTF [1],

k̂0z 1 k̂1
1 t

z 1
z 1 t

z 1

k̂2
(0 5 t 0 5t2 )z 0 5(1 t2 )

(z 1)2 z 1 t (1 0 5t )z 0 5t2

(z 1)2
2z 1

(z 1)2

Equating coefficients on both sides, we obtain the set of equations below.

0 5t2 k̂2 t k̂1 k̂0 0 (9.5)

(0 5 t 0 5t2 ) k̂2 (1 t ) k̂1 k̂0 2
(0 5 t t2 ) k̂2 (1 2t ) k̂1 2k̂0 1

The resulting solution is

k̂2 1
k̂1 1 5 t

k̂0 1 5t 0 5t2 (9.6)

Observe that the gain needed in the direct path increases with t . This makes sense,
since a higher delay results in an increased phase shift of the loop-gain function – thereby
needing a “stronger” zero to stabilize. The gain of the 1 s2 path does not change after
compensation – this is intuitively satisfying, since the in-band NTF (and magnitude of the
low-frequency loop-gain) has not changed.

The process of mitigating the effect of excess loop delay in an N th order CT M is
similar, and is summarized below.

a. Determine the discrete-time equivalents of the direct, 1 s, 1 s2, , 1 s paths
driven by the delayed DAC pulse, and denote them by L̂0(z) L̂ (z), respectively.

b. Determine the coefficients of these paths k̂0 k̂1 k̂ so that
k̂0 L̂0(z) k̂1 L̂1(z) k̂ L̂ (z) (1 NTF(z)) 1. This will result in a set
of (N 1) simultaneous equations in as many variables, which when solved, yield
k̂0 k̂1 k̂ .

The toolbox function realizeNTF_ct automates this procedure. From the
intuition gleaned from the first- and second-order examples, one should expect that the
gain of the direct path should be an increasing function of t . Further, the gain of the N th
order path should not change with delay. While the idea behind excess delay compensation
is straightforward, the algebra seems daunting, even in the second-order case. Further, the
whole process needs to be repeated if the DAC pulse changes. It, therefore, seems as if only
a particularly brave-hearted (or masochistic) reader would attempt to analytically solve the
excess delay problem in a high-order CT M, with an arbitrary DAC pulse. Fortunately,
as the next section shows, this is not as difficult as the analysis leading to equation (9.6)
would indicate.
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Figure 9.10 The excess delay compensation problem.
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9.1.3 Excess Delay Compensation in High-Order Continuous-Time Delta-
Sigma Modulators with Arbitrary DAC Pulse Shapes [2, 3]

A third-order CIFF modulator will be used as an example to illustrate the basic idea. The
problem we wish to solve is as shown in Figure 9.10, in which the quantizer is replaced by
an additive noise sequence e[n]. Part (a) of the figure shows a noise-shaping loop with k1,
k2, and k3 chosen so as to result in a desired NTF. How should k̂0 k̂1, k̂2, and k̂3 be chosen
so that the CT M of Figure 9.10(b) has the same NTF, even though there is an excess
delay t ?

Equivalently, one could pose the question in terms of the pulse response of the loop-
filter, as shown in Figure 9.11. The problem now reduces to choosing k̂0 k̂1, k̂2, and k̂3, so
that [n] is the same in both cases.

DAC

DAC
1 1(t t )

k̂0 k̂1 k̂2

1 1

p(t)

(t)

k1 k2

0(t) 1(t) 2(t)

(t)

0(t t ) 1(t t ) 2(t t )

[n]

1

k3

1

k̂3

3(t t )

3(t)

[n]

p(t)

Figure 9.11 Solution by equating the pulse responses of the ideal and delayed loop-filter outputs.

We consider two cases. In the first, we assume that the delayed DAC pulse p(t t )
does not extend beyond t 1. This situation applies to CT Ms with an RZ DAC with
less than a half-cycle delay, or an impulsive DAC with delay less than one cycle. p(t) is
otherwise arbitrary.

We first examine the output of the 1 s3 path, without and with delay, as shown in
Figure 9.12. As far as the loop’s NTF is concerned, only the samples of the waveforms

3(t) and 3(t t ) at multiples of 1s are relevant. From the inset in the figure, it is apparent
that for t 1, 3(t) can be obtained from 3(t t ) by “looking t ahead”. To this end, we
apply the Taylor series to 3(t t ) at t as follows.

3(t) 3(t t t )

3(t t ) t
d

dt
3(t t )

2 ( )

t2

2
d2

dt2 3(t t )

1 ( )

t3

6
d3

dt3 3(t t )

0 ( ) 0

3(t t ) t 2(t t )
t2

2 1(t t ) (9.7)
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Figure 9.12 Pulse responses of a three integrator cascade with ( 3(t t )) and without ( 3(t))
excess delay.

Note that terms of order three and beyond in the series expansion above are zero,
since p(t t ) 0 for t 1. What (9.7) is telling us is that given t and 3(t t ), we
can determine 3(t) if we have access to the derivatives of 3(t t ). From Figure 9.11,
it is immediately apparent that the derivatives of 3(t t ) are simply the outputs of the
preceding integrators. Thus, the output of the delay-free 1 s3 path can be obtained from
the delayed output by adding appropriate portions of the 1 s2 and 1 s paths, as seen from
(9.7). The same idea can be applied to obtain the ideal outputs of the 1 s2 and 1 s paths.

From Figure 9.11(a), the delay-free response of the loop-filter is given by (t)
k3 3(t) k2 2(t) k1 1(t). Using the discussion above, the same output can be obtained
from the delayed outputs as follows.

k3 3(t) k3 3(t t ) k3t 2(t t ) 0 5k3t2
1(t t )

k2 2(t) k2 2(t t ) k2t 1(t t )
k1 1(t) k1 1(t t )

(t) k3 3(t t ) (k2 k3t ) 2(t t ) (k1 k2t 0 5k3t2 ) 1(t t )

It is important to note that the equation above is valid for all t 1.

As far as the NTF is concerned, only the samples [n] are relevant. Thus, since the
outputs of the delay-free and delayed paths are zero for t 0, and equal for all times
t 1 2 n, we conclude that the NTF will be restored if the coefficients of the loop-
filter are modified as follows.

k̂3 k3

k̂2 k2 k3t

k̂1 k1 k2t 0 5k3t2

k̂0 0

Thus, no direct path is necessary for any DAC shape or delay where the delayed pulse does
not extend beyond t 1. The NTF of the modulator can be restored to the one without
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delay by appropriately tuning coefficients. A useful mnemonic for the delay-compensation
formulae above, and the rationale behind it, is the following.

Let us assume that the continuous-time loop-gain function needed to yield a desired
NTF (no excess delay) is

L (s)
k3

s3
k2

s2
k1
s

With excess delay, the loop-gain is L (s)e . Delay can be compensated by multiplying
L (s) by e . To do this, when DAC pulses such that p(t t ) 0 for t 1, the 1 s

path of the loop-gain should be replaced by a path whose transfer function is obtained by
multiplying 1 s by e , where the exponential is expanded up to the (l 1)th power as
shown below.

1
s

1
s

e
1
s

t
1

s 1

t 1

(l 1)!
1
s

Thus, in the third-order case, L̂ (s), which restores the NTF, is given by

L̂ (s) L (s)e
k3(1 st 0 5s2t2 )

s3
k2(1 st )

s2
k1
s

k3

s3
k2 k3t

s2

k1 k2t 0 5k3t2

s
(9.8)

An aspect of the preceding technique is that transformations between the s and z do-
mains are avoided. The coefficients can be calculated without frightening algebra (see, for
comparison, the analysis that led to (9.6)). Contrary to the impression given by the analysis
in the preceding subsection, the compensated loop-filter’s coefficients are independent of
pulse shape (provided, of course, that p(t t ) 0 for t 1).

What happens in the more practical case, where p(t t ) extends beyond t 1? This
occurs, for example, when an NRZ DAC is used and the the loop delay is positive (but less
than one clock cycle). From the analysis based on the Taylor series used in this section,
it is apparent that choosing the loop-gain function L̂ (s) as in (9.8) does ensure that the
pulse response of L̂ (s) will equal that of L(s) beyond t 2, since p(t t ) 0 for t 2.
Thus, the only difference between the samples of the pulse response of L (s) and L̂ (s) is
at t 1. This difference, therefore, should be made up by the direct path.

Let us now apply our techniques to the second-order modulator of Figure 9.9. The
loop-gain function needed to achieve an NTF of (1 z 1)2 is given by

L (s)
1
s2

1 5
s

k2 1 k1 1 5

To compensate for an excess delay of t , we need to do the following.

1
s2

1
s2 t

1
s

1 5
s

1 5
s

Thus,

L̂ (s)
1
s2

1 5 t

s
k̂2 1 k̂1 1 5 t
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Since an NRZ DAC with t 1 is used, a direct path is necessary. To determine the
gain of the direct path, the pulse responses of L (s) and the delayed response of L̂ (s)
should be determined. It is straightforward to see that

[1] k1 0 5k2 2 ˆ[1] (1 t ) k̂1 0 5(1 t )2 k̂2

k̂0 [1] ˆ[1] 1 5t 0 5t2

We see that, with the Taylor series based technique described in this chapter, translat-
ing back and forth between the s and z domains is avoided. Simple formulae, amenable
even to hand-calculations, and valid for arbitrary DAC pulse shapes, yield the coefficients
of the compensated filter in terms of those of the delay-free design.

Design Example

A fourth-order maximally-flat NTF with an out-of-band gain of 1.5 is chosen as the
target to be implemented. We assume that the coefficients corresponding to an ideal NRZ
DAC with no delay are known. We will use the techniques developed in this chapter to
determine the coefficients of the compensated modulator when an excess delay of a half-
clock cycle is introduced. The NTF, obtained from the toolbox, is given by

NTF(z)
(z 1)4

z4 3 194z3 3 892z2 2 136z 0 4444
We can compute the transfer function that yields the desired NTF for an NRZ DAC and no
excess delay as

L1(s)
0 6713s3 0 2495s2 0 0555s 0 0061

s4 (9.9)

If we assume a CIFF topology, k1 0 6713, k2 0 2495, k3 0 0555, and k4 0 0061.
For an excess delay of t 0 5, the coefficients of the loop-filter have to be modified to

k̂4 k4 0 0061 k̂3 k3 k4t 0 0585
k̂2 k2 k3t k4(t2 2) 0 2780

k̂1 k1 k2t k3(t2 2) k4(t3 6) 0 8031 (9.10)

With the coefficients above, the output of the loop-filter with the delayed DAC at t 1
is 0.423. It is easy to show that the sample of the ideal pulse response at t 1 for an NTF
(z 1) B(z) should be (N + the coefficient of z 1 in B(z)). For our NTF, it is 0.8060,
which means that the direct path should have a gain of (0 8060 0 423) = 0.37.

9.1.4 Summary

In this section, we found that excess delay can render a CT M unstable. Even if the mod-
ulator is stable, excess delay can reduce the stable input range. Modulators with high-order
and/or high out-of-band gains are more sensitive to the effects of excess delay. Fortunately,
the deleterious consequences of delay can be easily addressed by tuning the loop-filter’s
coefficients and by adding a direct path around the quantizer. Intuitively, coefficient tuning
and the direct path, in amplifier parlance, add zeros (or move existing ones) to the loop-
gain function and restore stability. Given the excess delay t , the modified coefficients
(that restore the NTF) can be easily determined. The direct path can be implemented in
many ways, some of which we will see in Chapter 10.
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9.2 Time-Constant Variations of the Loop Filter

As seen in Chapter 8, the NTF of a CT M is derived from that of a discrete-time proto-
type by using the impulse-invariant transformation. Denoting the impulse response of the
loop-filter of the discrete-time prototype by l1[n], the impulse response of the continuous-
time loop-filter l 1(t) has to be chosen so that

p(t) l 1(t) l1[n] (9.11)

We saw several ways of arriving at the loop-filter coefficients that satisfy the equation
above. In practice, however, the unity-gain frequencies of the integrators are dependent on
component values. Figure 9.13 shows the simplified schematics of two commonly used
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R

C

R

C

Figure 9.13 Integrators realized using active-RC and Gm-C techniques.

integrators, namely the active-RC and Gm-C structures. Assuming an ideal opamp in the
former, and that R 1 in the latter, we see that

V (s)
V (s)

1
sCR

(9.12)

Since R and C vary with process and temperature, l 1(t) is bound to deviate from its
nominal waveform, thereby modifying the NTF from the one that is desired. In this section,
our aim is to get some intuition about the consequences of RC variation on modulator
performance.

Denoting the transfer function of the loop-filter by L1(s), we see that decreasing every
RC product by a factor k causes L1(s) to become L1(s k ), where k 1. As a con-
sequence, the magnitude of L1(s) in the signal band increases, as shown in Figure 9.14.
Since the in-band loop-gain increases, the NTF must have a lower magnitude at low fre-
quencies, indicating better noise-shaping. Thus, Bode’s sensitivity integral predicts that
the NTF must be worse off at out-of-band frequencies. One should therefore expect the
maximum stable amplitude to be somewhat lower than that for the nominal value of the
RC product. In the same vein, time-constants larger than nominal should increase in-band
quantization noise and reduce the gain of the realized NTF at high frequencies.

Figure 9.15 shows the NTF magnitudes for a third-order CT M as the unity-gain
frequencies of the constituent integrators vary by 30%. In the time domain, the increased
out-of-band gain manifests as a “more frantic wiggling” of the output sequence when k

1, and vice versa, as shown in Figure 9.16.
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Figure 9.14 Magnitude of the loop-filter transfer function for the nominal RC, low RC (k 1),
and high RC (k 1) .
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Figure 9.15 NTF for a third-order CT M , as the RC products vary. The nominal NTF is
maximally flat with an out-of-band gain of 3.
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Figure 9.16 Time-domain illustration of the effect of RC variation.
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The analysis above notwithstanding, we must realize that a high-order negative feed-
back loop is conditionally stable, and should not be surprised if a CT M becomes un-
stable for large deviations of the RC product from its nominal value. It therefore becomes
necessary to tune RC time-constants close to their nominal values in the face of process,
voltage, and temperature (PVT) variations. There are many ways of doing this – one
method is shown in Figure 9.17. A current I is integrated on a digitally controlled capac-
itor bank for a time duration T . The voltage developed across the bank is compared to
a reference generated by passing I through a resistor R. The decision of the comparator,
therefore indicates if RC T is greater or lesser than 1. The logic then varies the digital
code controlling the capacitor bank in a successive-approximation fashion, so that RC T

approaches unity. The capacitors used in the integrators of the CT M are scaled versions
of that used in the tuning circuit. The code developed in the tuning circuit is applied to all
the capacitor banks in the modulator.
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Figure 9.17 An example replica RC tuning loop with a digitally programmable capacitor bank.

9.3 Clock Jitter in Delta-Sigma Modulators

9.3.1 The Discrete-Time Case

We first examine the effect of clock jitter in a discrete-time modulator. The continuous-
time input u is sampled up-front, as shown in Figure 9.18(a). Ideally, the edges of the
sampling clock should occur exactly at integer multiples of T . In practice, however, there
are deviations in the timing of the edges, as shown in Figure 9.18(b). These timing errors,
denoted by the sequence t[n], are termed jitter. For simplicity, we assume that t[n] is a
white sequence with an rms value . Also, we will assume that the jitter is small, so that
the error sequence due to jitter is given by

e [n]
du

dt
t[n] (9.13)

We let u be a sinusoid with amplitude A and frequency f . Thus,

e [n] 2 A f cos(2 f nT ) t[n] (9.14)
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Figure 9.18 Clock jitter in a discrete-time modulator.

Since t[n] is white , e [n] is also white, and has a mean-square value of 2( A f )2

Of this power, only a fraction 1 OSR lies in the signal band. The in-band SNR due to jitter
is thus given by

SNRjitter
OSR

4 2( f )2 (9.15)

From the discussion above, it is seen that in a discrete-time modulator, clock jitter
degrades performance by corrupting the input even before it is processed by the converter.
Since the discrete-time circuitry in the modulator is usually designed to settle well within
half of a clock period, clock jitter does not influence the performance of the modulator
itself. In a CT M, however, the mechanism of degradation is quite different, as we will
see below.

9.3.2 Clock Jitter in Continuous-Time Delta-Sigma Modulators

Consider the CT M shown in Figure 9.19(a). The ADC and DAC are clocked by
clk_adc and clk_dac respectively. As discussed earlier in this chapter, clk_dac has to
be delayed with respect to clk_adc to give the ADC enough time to resolve its input.
Clock jitter affects the performance of the ADC and DAC. The ADC, sampling with a jit-
tery clock, can be modeled as one working with a jitter-free clock, but with an error e

added at its input, as shown in Figure 9.19(b). In a similar fashion, the output of a jittery
DAC can be modeled by an additive error e at the output of a jitter-free DAC. The re-
sulting model for the CT M , which incorporates the effects of clock jitter, is given in

We also assume that [ ] is stationary, i.e., its statistics are independent of time. In contrast, [ ] is white but
not stationary.
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Figure 9.19 Clock jitter in a CT M.
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Figure 9.20. It is immediately apparent that e is shaped by the modulator’s NTF, just

ADC

DAC

u(t) L(s) [n]

clk_adc

clk_dac

e

e

Figure 9.20 Modeling jitter induced errors in a CT M.

like quantization noise, and has virtually no effect on the in-band spectrum of the CT M
.

The story is different, however, with the error induced by jitter at the DAC output. As
seen in Figure 9.20, e adds to the input to the modulator. The low-frequency content
of e is responsible for the degradation of the modulator’s in-band SNR, and therefore
merits a more careful analysis [4, 5].

We first consider the case of an NRZ DAC, as shown in Figure 9.21. Without jitter, its
output waveform has transitions that occur at multiples of T . The difference between the
ideal and jittery output waveforms is shown in the lower part of the figure – it consists of a
sum of slivers, whose width and height at nT are given by t[n] and height ( [n] [n 1]),
respectively. We see that jitter in a particular clock edge introduces an error at that edge
only if the modulator output changes in that cycle.

Since we intend to determine the in-band noise due to clock jitter, the e can be
thought of as an equivalent error sequence at the DAC input, as reasoned below. Consider
an error pulse of width t[n] and height ( [n] [n 1]). At frequencies much smaller
than f 1 T , its spectrum is identical to that of a pulse with width T , and height e [n]
( [n] [n 1])( t T ). Thus, the waveform e (t) at the DAC output can be replaced
by an equivalent noise sequence e [n] at the DAC input, as shown in Figure 9.21(b).

The in-band noise spectrum of , therefore, consists of two parts – one due to
shaped quantization noise, and the other due to clock jitter mixing with the sequence
( [n] [n 1]). Since we assumed t[n] to be a white sequence, e [n] is also white,
and has a mean square value

2 2
2

T2 (9.16)

where 2 denotes the mean-square value of ( [n] [n 1]).

Assuming that u is in the signal band, where the STF 1, we can write

[n] u[n] e[n] h[n]
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Figure 9.21 (a) DAC input sequence, and output waveforms with and without clock jitter. (b) Error
waveform. (c) Equivalent model, accurate at low frequencies.

In the expression above, as usual, e[n] and h[n] denote the quantization noise and the
impulse response corresponding to the NTF, respectively. Thus,

[n] [n 1] u[n] u[n 1] (e[n] e[n 1]) h[n]

Since we assumed u to be within the signal band, u[n] u[n 1]. Thus,

[n] [n 1] (e[n] e[n 1]) h[n]

2 is more easily found in the frequency domain as shown below. e[n] is assumed to be
white. Since the step size is 2, its mean-square value is 1 3. Thus,

2 1
3 0

(1 e ) NTF(e ) 2d

Since e is white, only a fraction (1 OSR) of its power lies in the signal band. The in-band
noise due to jitter (J) is thus given by

J 2
2

T2
1

OSR
2

T2
1

3 OSR 0
(1 e ) NTF(e ) 2d

This seemingly formidable expression can be separated into three components as in-
dicated below:

J

2

T2

jitter

1
OSR

in-band component

1
3 0

(1 e ) NTF(e ) 2d

mean sq. value of transitions

(9.17)
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From (9.17) above, we see that the gain of modulator’s NTF around has a significant
bearing on the in-band noise. This makes sense, as it is the high-frequency gain of the NTF
that dictates how ‘wiggles’ around u. From Chapter 4, we know that modulators with a
higher out-of-band gain have lower in-band quantization noise; however, as the discussion
above indicates, this causes the noise due to clock jitter to increase.

What happens when the number of quantizer levels (M) is increased? The maximum
stable amplitude can be expressed as (M 1), where depends on the details of the NTF.
The peak signal-to- jitter-noise ratio (SJNR) is 2(M 1)2 J, indicating that increasing
M is an effective way of reducing the susceptibility of the modulator to clock jitter. This
makes sense, since the height of the DAC transitions are reduced in relation to its full-scale
output.

Let us take a moment to compare the mechanisms by which clock jitter degrades
the performance of discrete-time and continuous-time modulators (assuming an NRZ
feedback DAC). In the former, clock jitter “mixes” with the derivative of the input. In the
latter, it “mixes” with the changes in the feedback waveform, which not only consists of
the input but also contains shaped quantization noise.

9.3.3 Clock Jitter in Single-Bit Continuous-Time Delta-Sigma Modulators

The expression for J in (9.17) assumed that quantization error can be modeled as an ad-
ditive white sequence. As we have seen in earlier chapters, this is not quite true in a 1-bit
modulator. Figure 9.22 shows the ideal and jittered DAC waveforms in a 1-bit CT M
with an NRZ DAC. Since the height of the transition is always 2, the error introduced by
jitter at the nth clock edge, assuming [n] differs from [n 1], is a pulse with width t[n]
and height 2. As in the multi-bit case, e (t) at the output of the DAC can be modeled by

ideal

jittered

e (t)

1

1

2

2

Probability of a transition = p

0 1 2 n (n 1)

Figure 9.22 Modeling DAC error due to jitter in a single-bit CT M with an NRZ DAC.

an equivalent error sequence e at the DAC input, where e [n] ( t[n] T )( [n] [n 1]).
Denoting the probability that makes a transition by p, we see that the in-band noise due
to jitter is

J
T

2 4p

OSR
(9.18)

What value do we use for p? When u 0, p should be high, as transitions between
1 in an attempt to make the equal to u. As u increases, the number of transitions in
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Figure 9.23 Probability of the output of a third-order single-bit CT M making a transition as a
function of dc input.

should reduce, since should have more 1’s than 1’s. When u increases further, so as
to destabilize the modulator, the quantization error is much larger than the full scale, and
this should lead to a dramatically reduced p. Figure 9.23, which shows p as a function
of input dc level for a third-order single-bit CT M, confirms this intuition. For small
u, p 0 8, and falls linearly for u 0 2 until u 0 8, beyond which the modulator
becomes unstable. It is thus seen that using p 0 8 provides a good estimate of the in-band
noise due to clock jitter.
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Example : Jitter Noise in CT Ms with 1 and 4 Bit Quantizers

Suppose that we need to design a CT M with an in-band SQNR of 110 dB in a
25 kHz bandwidth. Several combinations of order, OSR, and number of quantizer
levels can be used to achieve the desired SQNR. We consider two modulators: one
that uses a 1-bit quantizer, and another that employs a 4-bit quantizer. Further, we
restrict the orders of both modulators to three. The NTFs of both modulators
are chosen to be maximally flat with an out-of-band gain of 1.5. Clock jitter is
assumed white, with an rms value of 25 ps. Calculations show that the two-level
modulator needs twice the OSR as its 16-level counterpart to achieve the same
peak SQNR. We also see that the SNR due to jitter is about 28 dB worse in the
single-bit case than in the multi-bit one. This makes sense – the step size, relative
to full scale, in the latter is smaller by a factor of 15 (23.5 dB), and the MSA is
higher by about 2 dB. When compared to T , rms jitter is smaller by a factor of 2
(6 dB), but OSR is also smaller by a factor of 2. The net increase in SJNR due to
multi-bit operation, therefore, is seen to be (25 5 6 3) = 28.5 dB.

2 levels 16 levels
Order 3 3

NTF’s OBG 1.5 1.5
OSR 128 64

f 6.4 MHz 3.2 MHz
T 156.25 ns 312.5 ns

Maximum stable amplitude 0.8 FS FS
Peak SQNR 110 dB 110 dB
Peak SJNR 88 dB 116 dB

9.3.4 Continuous-Time Delta-Sigma Modulators with RZ DACs

Earlier in this section, we discussed the effect of clock jitter in CT Ms with NRZ feed-
back DACs. We now analyze what happens when the DAC is of the RZ kind. Before we
dive into the details, we pause for a bit and ponder over why RZ DACs are relevant in the
first place. To see this, remember that the output waveform of any practical DAC (NRZ or
RZ) will have nonzero rise and fall times. It is also the case that the rise and fall times will
not necessarily be identical.

Section 6.7 described that such asymmetry is a source of a nonlinear transition error,
but let us recall that discussion. Consider the output waveforms of a practical 1-bit NRZ
DAC for two periodic input sequences, 1 1 1 1 and 1 1 1 1 , as
shown in Figure 9.24(a). Both sequences have an average value of zero. The DAC has
a rise time t , and its fall time is assumed to be zero. The average value of the output
waveform for the first input sequence is seen to be t 2. For the second sequence, it is

t 4. Therefore, we see that the average of the output waveforms for the two zero-mean
input sequences is not the same. This is enough to demonstrate the inherent nonlinearity
of an NRZ DAC in the presence of rise–fall asymmetry. Intuitively, this nonlinearity can
be explained as follows. In a 1-bit DAC, every positive transition must be followed by a
negative transition (not necessarily at the next clock edge). If the transitions are identical,
the errors made during the positive and negative transitions are equal in magnitude but
opposite in sign. On average, therefore, their effect is zero – indicating no degradation of
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in-band (low-frequency) performance. If the transitions are not symmetric, the errors due
to them do not cancel. Further, the occurrence of transitions is dependent on the signal.
Thus, the average error is not zero, but more important, it depends on the signal in a
nonlinear manner.

(a)

(b)

NRZ DAC

RZ DAC

1

1

t
0 1 2 3 4 5

1

1

t

1 1 1 1 1

1 1 1 1 1

2

2

t
0 1 2 3 4 5

2

2

t

1 1 1 1 1

1 1 1 1 1

Figure 9.24 (a) Output of an NRZ DAC with inputs 1 1 1 1 and 1 1 1 1 .
Due to rise-fall asymmetry, the average value of the DAC output waveform is not the same in both
cases. (b) Output of an RZ DAC with rise–fall asymmetry.

An RZ DAC, whose output waveforms are shown in Figure 9.24(b), does not have
the problems highlighted above. This is because the output waveform is associated with a
rising and falling transition in every clock cycle, independent of the input sequence. The
inherent linearity of an RZ DAC, despite the rise–fall asymmetry, is the prime motivation
for its use. The price paid for this, however, is the increased sensitivity to clock jitter, as
we show next.

ideal

jittered

e (t)

2

2

2
0 1 2 n (n 1)

2

Figure 9.25 Error due to jitter in a single-bit CT M with an RZ DAC.

Figure 9.25 shows the output waveforms of a single-bit RZ DAC without and with
clock jitter. e (t) consists of slivers of height 2. Further, there are two such slivers in
every clock period - this is due to the up and down going transitions associated with the
pulse. Assuming (conservatively) that random jitter is white and affects all edges, we see
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that the in-band noise due to jitter is

J
T

2 8
OSR

(9.19)

For a 1-bit modulator, therefore, an RZ DAC performs about 4 dB worse than an NRZ
DAC for the same clock jitter. What happens in the multi-level case? In contrast to an
NRZ DAC, where the heights of the transitions in the DAC waveform are a few levels,
an RZ DAC’s output goes all the way from 0 to 2 [n] and back in every cycle. In the
jitter scenario we have assumed (namely, white jitter), this puts an RZ DAC at a significant
disadvantage with respect to jitter.

Further, while the RZ DAC is itself very linear, such a DAC increases the demands
placed on the linearity of the loop-filter. This is due to the following. The loop-filter in a
CT M processes the difference between the input and feedback waveforms. The RZ DAC
results in a feedback waveform with twice the peak-to-peak amplitude when compared to
its NRZ counterpart. As a result, the error waveform is much larger in magnitude in the
former, even though the low-frequency content of both waveforms is the same. The loop-
filter, therefore, has to be much more linear in the RZ case.

In [6], Adams proposes interleaving two RZ DACs to obtain the linearity of an RZ
DAC while avoiding the jitter sensitivity of a single RZ DAC. This is often called the
dual-RZ DAC.

9.3.5 Real Clock Sources and Phase Noise

So far in this section, we have gained an understanding of the mechanisms through which
clock jitter degrades the performance of a CT M . Our analysis assumed white jitter –
something that is not quite true in practice. It turns out that the output of a practical clock
source can be expressed as

sin(2 f t (t)) (9.20)

where (t) is small, and varies slowly when compared to 2 f t. (t) results due to noise
processes in the clock source, and perturbs the phase of the clock from its ideal trajectory
of 2 f t. It is, therefore, referred to as phase noise.

For small (t), (9.20) can be written as

sin(2 f t) (t) cos(2 f t) (9.21)

The power spectral density of is given by

P ( f )
1
4

( ( f f ) ( f f ))
1
4

(S ( f f ) S ( f f )) (9.22)

where S ( f ) represents the power spectral density of (t).

It is thus seen that in the presence of phase noise, the spectrum of the clock source can
be thought of as consisting of the carrier, with power 1 2, and the spectrum of (t), which
is translated around f . It turns out that a large part of (t) varies slowly in relation to
2 f t. S ( f ) is thus lowpass in nature, and reduces with frequency, before flattening off.
When is measured on a spectrum analyzer, the power at negative frequencies folds
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atop that at positive frequencies, resulting in a spectrum similar to that in Figure 9.26. As
the figure shows, S ( f ) is the ratio of the power of in a 1 Hz bandwidth around
( f f ) to the power of (=1/2). In practice, therefore, S ( f ) is specified (usually
in dBc) in terms of the power spectral density of at a frequency f offset from f .

f

P( f )
1
2

f

f

1
2 S ( f f )

Figure 9.26 Power spectral density of as observed on a spectrum analyzer.

How does (t) manifest in the time domain? Without noise, (t) 0 and the rising
edges of occur precisely at integer multiples of 1 f T . Phase noise causes a
deviation in the zero-crossings of from their noise-free values. It is easy to see that

(t) displaces the rising edges of by

t[n]
[nT ]
2

T (9.23)

We have earlier seen that the effect of clock jitter on a CT M with an NRZ feedback
DAC can be modeled by adding an error sequence e [n] ( [n] [n 1])( t[n] T ) to
the modulator output. Assuming an in-band input u(t) A cos(2 f t) and that STF 1,
we see that

[n] [n 1] 2 A f T sin[2 f nT ] (e[n] e[n 1]) h[n] (9.24)

where h[n] is the impulse response corresponding to the NTF. Using (9.23), we can express
e [n] as

e [n] A( f f ) [nT ] sin[2 f T n]

1 input signal component

[(e[n] e[n 1]) h[n]] ( [nT ] 2 )

2 shaped quantization noise component

(9.25)
where e 1 is due to the interaction of jitter with the input signal, while e 2 models the
mixing of shaped quantization noise with jitter. The spectrum of e is illustrated with the
simplified sketch shown in Figure 9.27. Since multiplication in the time domain corre-
sponds to convolution in the frequency domain, it follows that the spectral density of e 1 is
that of [nT ], scaled by (A2 2)( f f )2 and translated around f . The input tone has an
amplitude A. Therefore, the power spectral density of e 1 at a frequency f offset from f

in relation to that of the input ( A2 2) is simply ( f f )2S ( f ). Hence, the effect of
the close-in phase noise of the clock source is to broaden the line spectrum that we would
expect for a sinusoidal input.
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Figure 9.27 Simplified sketch illustrating the effect of clock phase noise on the PSD of a CT M.

The PSD of e 2 is the result of convolution of the spectra of the first difference of the
shaped quantization noise and the phase-noise sequence. It is the in-band power of e 2 that
we are interested in. From Figure 9.27(a), we see that the majority of the (white) in-band
noise due to jitter is contributed by the far-out phase noise convolving with the shaped
noise at high frequencies. Without jitter, PSD( ) should have very little in-band noise and
shaped out-of-band noise, as shown in Figure 9.27(b). With jitter, however, the in-band
spectrum is corrupted by sidebands around the input tone, as well as an increased noise
floor.
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Figure 9.28 Measured phase noise of two 6 GHz clock sources as a function of frequency offset.

Figure 9.28 shows the measured phase noise plots of two 6 GHz clock sources as a
function of frequency offset. It is apparent that the first source should result in a much
smaller in-band noise due to jitter, since its phase noise at large frequency offsets is about
20 dB lower than that for source 2. Are any (or both) of these clock generators suitable for
a single-bit CT M operating with OSR 50, and targeting an SNDR of 75 dB?
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Source-1 has a far-out phase noise spectral density of about 150 dBc/Hz. Over a
6 GHz bandwidth ( f ), this corresponds to 52 2 dBc. The rms phase error is

10 5 22 2 45 10 3 radians. In the time domain, this corresponds to an rms (white)
jitter of (2 f ) 65 10 15 s. Using (9.18) with p 0 8, and assuming that the MSA
is 3 dBFS, the peak signal-to-jitter-noise ratio is calculated to be 74 dB. To the jitter noise,
we must also add thermal and quantization noise, which will degrade the in-band SNDR
further. The conclusion is that both these clock sources are incapable of achieving the
performance we seek from our 1-bit CT M with an NRZ DAC. Architectural changes are
necessary to reduce the susceptibility of this modulator to clock jitter. Several alternatives
exist; we will examine some of these in the next section.

9.4 Addressing Clock Jitter in Continuous-Time Delta-Sigma Modulators

From our discussion on the manifestation of jitter in RZ and NRZ DACs, it is apparent
that the shape of the DAC pulse has a significant bearing on the jitter sensitivity of a
CT M . One approach to mitigating the effect of jitter, therefore, is to choose the DAC
pulse shape in a way that jittery clock edges have little or no effect on the low frequency
content of the feedback DAC waveform. This, for example, can be accomplished by using
an impulsive feedback DAC, as we show below. Figure 9.29(a) shows the outputs of a
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e(t) = Ideal-Jittery

e(t) dt

t[n]
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(c)

t t

t

Figure 9.29 Effect of clock jitter on an impulse DAC waveform. (a) Outputs of a jitter-free and
jittery DAC, (b) e(t) and (c) integral of e(t).

jitter-free and jittery impulsive 1-bit DAC. The difference between these two waveforms,
which corresponds to the error caused by jitter, is shown in part(b) of the figure. The in-
band components of e(t) are responsible for the degradation of the modulator’s SNR. To
better understand the low-frequency power spectral density of e(t), consider the integral
of e(t), shown in Figure 9.29(c). The area of each pulse is [n] t[n] As we concluded
when we evaluated the jitter error of an NRZ DAC, the low-frequency spectral density of
this waveform is the same as that of the sequence [n]( t[n] T ). If jitter is assumed to
be white, it follows that the power spectrum of the integral of e(t) is also white. The PSD
of e(t) must hence be proportional to 2, indicating that noise due to clock jitter is, to
first order, shaped out of the signal band. An impulsive DAC is, therefore, less susceptible
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to clock jitter than its NRZ counterpart. Intuitively, this is because the area of the pulse
(which dictates the low-frequency content of the DAC waveform) is not affected by jitter.
The fact that the pulse position is altered by jitter is of secondary consequence, as this error
has a highpass spectrum.
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Figure 9.30 (a) CT M with a switched-capacitor feedback DAC. (b) i (t) with and without
jitter.

In reality, it is impossible to realize an impulse. A practical alternative is to approxi-
mate the impulse by an exponentially decaying pulse [7]. How can one implement a DAC
with such a pulse shape? One way is shown in Figure 9.30. The sampling rate of the mod-
ulator is assumed to be f ( 1 T ). The capacitor C is charged to [n] during 1. In 2,
it is discharged into the virtual ground of the operational amplifier though the resistor R .
If the opamp is ideal, the DAC current (without jitter) is given by

i (t) [n]p(t nT ) (9.26)

where

p(t)
1

R
exp

(t 1
4 )

R C

1
4

t T
3
4

(9.27)

and zero elsewhere.

How does this DAC fare with a jittery clock? Figure 9.30(b) shows i (t). Assuming
white jitter on both edges of 1 and 2, we obtain the difference in the areas of the current
pulses that are fedback with and without jitter is:

e(t)
[n]
R

exp
T

2R C
t[n] t n

1
2

(9.28)
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From this equation, it is clear that the error due to jitter reduces exponentially with the
discharge time constant R C . It is thus tempting to use a small R , so as to hasten the
discharging of the capacitor. This, however, has a very undesirable consequence. Since the
capacitor is charged to [n] at the end of 1, the initial current injected by the DAC during

2 is [n] R . This current has to be supplied by the opamp, which mandates that it be
extremely linear (in turn increasing its power dissipation).

Choice of C in a Switched-Capacitor DAC

How should C should be chosen in the CT M of Figure 9.30, so as to achieve
an STF with a dc gain of 1? This means that u, for a dc u. The average
current flowing through the input resistor is seen to be u R. Since the average
current flowing through the integrating capacitor has to be zero, it follows that
i (t) u R. Assuming that the capacitor is completely discharged during 2,
it is straightforward to see that

i (t) f C (9.29)

Thus, the condition STF(0) 1 dictates that f C 1 R, indicating that the
switched-capacitor resistor in the feedback path must equal the input resistor.

To summarize, a switched-capacitor (SC) feedback DAC mitigates the effect of clock
jitter at the expense of the modulator’s linearity. The fundamental reason for this is the
high peak-to-average ratio of the exponentially decaying DAC pulse. It turns out that an
SC DAC also severely compromises the alias rejection of the modulator when the opamp is
not ideal [8]. In view of the several problems that afflict an SC DAC, it is not as attractive
as it may at first seem.

9.5 Mitigating Clock Jitter Using FIR Feedback

A particularly elegant way of addressing the clock jitter problem in a CT M is to use
FIR feedback [9, 10]. We illustrate with the single-bit example shown in Figure 9.31. The
2-level output sequence is filtered by an N-tap lowpass FIR filter with transfer function
F(z), before exciting the main feedback DAC. The DAC has an NRZ pulse shape. For
simplicity, the tap weights of F(z) are assumed to be identical. Since 1, the magnitude
of transitions in is 2. With F(z) in place, this is reduced to 2 N . Thus, the magnitudes
of the steps in the feedback DAC waveform (denoted by 1(t) in Figure 9.31(a)) are N

times smaller than what they would have otherwise been. Since noise due to clock jitter is
proportional to the height of the transitions in the DAC output, it follows that the in-band
mean-square noise due to jitter is reduced by 20 log(N ) dB. This argument assumes that
the jitter is common to all the DAC elements. An implementation should, therefore, use a
common clock for all elements – i.e. not a tree of clock buffers.

The FIR DAC has other important benefits. Since F(z) is a lowpass filter, the input
component of is not affected, though the power of the shaped noise is reduced. The
DAC’s output 1(t), therefore, has a reduced high-frequency content that closely follows
the input u. The error processed by the loop-filter, which is u(t) 1(t), is therefore much
smaller. This relaxes the linearity requirements of the loop-filter, just like in a CT M
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Figure 9.31 Using an FIR feedback DAC to mitigate noise due to clock jitter in a single-bit
modulator.

with a multi-bit DAC. Intuitively, since 1(t) “looks” like the output of a multi-bit DAC,
one should expect similar benefits with respect to clock jitter and loop-filter linearity.

Implementing the FIR DAC as drawn in Figure 9.31(a) is problematic when the DAC
levels are not equally spaced (due to mismatched components). Recognizing that [n] is a
two-level sequence, a linear DAC-filter combination can be realized using the semi-digital
approach [11], as shown in Figure 9.31(b). Here, the delays are implemented digitally,
while the individual DAC outputs (which are assumed here to be currents) are weighted
and summed in the analog domain. It is easy to see that DAC mismatch modifies the
transfer function of the filter but does not cause nonlinearity.

0 5 10 15 20 25 30 35 40

-150

-100

-50

0

f (kHz)

P
S
D

(d
B

F
S
)

1-bit quantizer

Ideal

12-level quantizer

1-bit quant. + 12-tap FIR DAC

Figure 9.32 Comparison of the PSDs of various CT Ms with clock jitter, assumed white ( f

6 144 MHz, 160 ps). The ideal (jitter-free) spectrum is also shown for comparison.
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Figure 9.32 compares the PSDs of single-bit, multi-bit, and single-bit+FIR DAC third-
order CT Ms with clock jitter. The PSD without jitter is also shown. The input is a

6 dBFS sinusoid. The multi-bit modulator employs a 12-level quantizer, and is clocked
at 1/3 the clock rate of the single-bit design. To achieve the same in-band quantization
noise as the single-bit design, the out-of-band gain of the NTF has to be increased to 2.8.
With jitter, the performance of the single-bit design is significantly worse than that of the
multi-bit one, as expected. When a 12-tap FIR DAC is used, however, the noise due to
jitter reduces by 20 log10(12) 21 5 dB, and the performances of the 1-bit and multi-bit
designs are nearly the same. The assumption here is that NTF of the single-bit modulator
has been restored after incorporating the FIR DAC, as discussed next.

Having sung praises of the FIR DAC’s advantages, we must not lose sight of the fact
that the FIR filter introduces delay in the loop, and most likely renders the modulator
unstable. One of the key design challenges with an FIR DAC, therefore, is to compensate
the loop for the effect of the FIR filter. Stated formally, the problem is as follows. A
prototype modulator with an NRZ DAC has a known (desired) NTF. An FIR filter F(z)
is inserted before the DAC, to take advantage of several of its properties described above.
The questions we wish to answer are the following.

a. Is it possible to restore the NTF of the loop to that of the prototype?

b. If so, how should the loop-filter be modified to restore the NTF?

Fortunately, it turns out that the first question can be answered in the affirmative. In fact, as
we will see below, the NTF of loop with the FIR DAC can be restored exactly. In a manner
reminiscent of the process of excess loop delay compensation, it turns out that this can be
done by modifying the loop-filter coefficients and by adding a direct path FIR filter around
the quantizer.

To illustrate the process of compensation, we use a normalized third-order CIFF mod-
ulator with an NRZ DAC. The method of moments [3], which we discussed in Chapter 8,
allows us to quickly and simply determine the modified coefficients. We denote the coeffi-
cients and DAC pulse moments of the prototype modulator by k1 k3 and 0 2,
respectively. As mentioned earlier, the prototype’s coefficients are assumed to have been
chosen to achieve a desired NTF. The main feedback DAC of the prototype is modified to
a 4-tap FIR DAC with equal tap weights (each being 0.25), as shown in Figure 9.33(a). We
claim that the loop can be compensated by modifying the coefficients to k̃1 k̃3 and by
adding the compensating FIR DAC (whose transfer function is denoted by F (z)).

Consider the pulse response of the loop-filter at the point ˜1(t) in Figure 9.33(a). The
FIR DAC driving the loop-filter can be thought of as a modified NRZ DAC with a pulse
shape 4 seconds wide, with height of 0.25, as shown in part(c) of the figure. The moments
of this pulse are denoted by ˜0 ˜2. Since the modulator is of third-order, the relevant
moments of the DAC pulse are ˜0 1, ˜1 2, and ˜2 16 3 From the theory of
moments in Chapter 8, 1(t) for t 4 can be expressed as

˜1(t) k̃3
˜0
2

t2 ˜1t
˜2
2

k̃2( ˜0t ˜1t) k̃1 ˜0 t 4 (9.30)

For the prototype loop-filter, (t) (Figure 9.33(b)) is given by

(t) k3
0

2
t2

1t
2

2
k2( 0t 1t) k1 0 t 1 (9.31)
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Figure 9.33 (a) A third-order CT M with a 4-tap FIR DAC compensated for the delay of the
FIR DAC. F (z) is also a 4-tap FIR filter. (b) Determining the pulse response (t) of the loop-filter
without the FIR DAC. (c) ˜1(t) can be made to equal (t) for t 4 by modifying coefficients. F (z)
is needed to compensate for the difference in the sampled pulse response for t 4.
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where 0 1, 1 1 2 and 2 1 3 If k̃’s are chosen according to

k̃3 k3

k̃2 k2 k3 ( ˜1 1) k2 1 5k3 (9.32)
k̃1 k1 ( ˜1 1) (k2 ˜1k3) 0 5k3 ( ˜2 2) k1 1 5k2 0 5k3

Hence, ˜1(t) and (t) are equal for t 4.
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Figure 9.34 Loop filter pulse responses of the NRZ prototype, the (coefficient tuned) loop-filter
with a 4-tap FIR DAC, and the response of the compensation filter. The main FIR DAC taps are all
assumed to be equal. The direct path DAC with response F (z) should make up for the difference
( ˜1(t) (t)).

Figure 9.34 shows ˜1(t) and (t) in our 4-tap example. From this, it is immediately
clear that tuning k̃1 k̃3 can only ensure that the sampled pulse response matches that
of the prototype beyond t 4. There are just not enough degrees of freedom to achieve
the desired pulse response for t 4. One possible way of achieving the desired pulse
response for t 4 is to use a four-tap compensation filter (F (z)), in a direct path around
the quantizer, as shown in Figure 9.33(a). The taps of F (z) can be computed using the
following steps.

a. Using k1 k3 from the prototype and the coefficients of the main FIR DAC, use
(9.32) to compute k̃1 k̃3.

b. Determine the pulse response of the prototype loop-filter and the coefficient tuned
loop-filter with the FIR feedback DAC. These responses will be identical beyond
t M , where M denotes the number of FIR DAC taps.

c. Determine the difference between the pulse responses in step (b) above, that lasts for
a duration M . The direct path filter taps are the samples of this difference at times
1 (M 1).

It is not necessary for the compensation path to appear directly around the quantizer. It can
be moved to the input of the third or second integrators. For an M-tap FIR filter with all
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equal taps, it is straightforward to see that (9.32) results in

k̃3 k3

k̃2 k2
(M 1)

2
k3

k̃1 k1
(M 1)

2
k2

(M 1)(M 2)
12

k3 (9.33)

From the discussion above, it appears as if choosing a large number of FIR taps is
beneficial, since it results in better filtering of the feedback sequence. This, apart from
reducing jitter sensitivity, should also reduce the magnitude of the error signal that is pro-
cessed by the loop-filter and thereby improves linearity. What then, is the limit to the
number of FIR taps? What prevents one from using, for instance, a 200-tap filter? The de-
lay introduced by the filter cannot be a problem, since its effect can be exactly compensated
by coefficient tuning and a direct-path FIR DAC, as discussed earlier.

In our analysis of jitter immunity achieved by FIR feedback, we did not consider the
effect of jitter noise injected by the compensation DAC. The latter depends on the specific
loop-filter architecture, and the location of the compensation DAC. Analysis shows that
these are important considerations that limit the number of taps that one can use. As for
linearity improvement, it turns out that the phase shift between u and the FIR DAC output

1(t) (Figure 9.31) increases with the number of taps. This means that the magnitude of
(u 1(t)) will increase if a large number of taps are used. Yet another consequence of FIR
feedback is a change in the STF. As seen from (9.33), the loop-filter coefficients k1 and k2
have to increase to compensate for the delay of the main FIR DAC. This means a higher
gain of the transfer function from u to (L0 ) at high frequencies, thereby increasing
STF peaking. Finally, on the practical front, increasing the number of taps necessitates
more flip-flops, and result in a much smaller “unit DAC”. The former increases switching
power, while the latter results in increased area when resistive DACs are used. Bearing
these constraints in mind, it appears that there is little to be gained by choosing an FIR-
DAC with more than 10–15 taps.

To summarize, using a single-bit quantizer with FIR feedback combines the benefits
of single-bit and multi-bit operation. The ADC design is power efficient, since only one
comparator is used. The FIR DAC is inherently linear, even when the weights of the filter
deviate from their nominal values. Thus, element mismatch does not result in distortion,
unlike in a multi-bit DAC. Also, the FIR-DAC output waveform resembles that of a multi-
bit DAC, and benefits from a small step size, just like a multi-bit CT M. While we
have argued the advantages of FIR feedback assuming equal tap weights, one could do
marginally better with taps optimized to minimize in-band noise due to jitter. An FIR
DAC, therefore, is a very effective way of reducing jitter sensitivity. As we have seen
above, given F (z), the loop’s NTF can be restored exactly. Finally, while a single-bit ADC
with an FIR DAC is particularly useful in practice, FIR feedback can be applied to multi-bit
ADCs as well.
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9.6 Comparator Metastability

In our discussion on excess delay in CT Ms, we assumed that the ADC needs a nonzero
time to make a valid decision. It turns out that reality is a bit more complicated. We begin
our discussion by studying the behavior of a 1-bit quantizer (the comparator). The output
of an ideal comparator is simply the sign of its input . A practical comparator has offset,
and a delay that depends on the magnitude of its input. Offset is the result of transistor and
capacitor mismatch, and details of the latch construction. As we discuss below, the time
taken by the comparator to give a valid output depends on the magnitude of the differential
input. How does this influence the operation of the CT M?

Assuming an NRZ feedback DAC is used, its pulse width is modulated by the signal-
dependent delay of the ADC. As a result, the in-band SNR is degraded, like when a jittery
clock is used.
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Figure 9.35 (a) The StrongARM latch. (b) Equivalent circuit during regeneration and (c) evolution
of ( ) during regeneration.

Figure 9.35(a) shows a commonly used comparator circuit, often referred to as a
StrongARM latch [12]. When clk is low, M7 8 pull and to the supply. When
clk goes high, M9 turns on. Subsequently, M1 2 turn on and are initially in saturation. The
differential current developed during this phase creates an imbalance between and

. M3 4 are the next devices to turn on and are initially in saturation. The parasitic capac-
itances at differentially appear negative at , causing a voltage gain at .
All the while, the common-mode of and keeps reducing. Finally, M5 6 turn on
and M1 2 go into the triode region, and regeneration begins. The equivalent circuit during
regeneration is shown in Figure 9.35(b). When the transistors are in saturation, the in-
verters can be modeled by transconductors. C represents the parasitic capacitance at the
regenerating nodes. The difference evolves according to

(t) (t) ( (0) (0)) exp
t

(9.34)

where C Eventually, the inverters saturate and reach supply/ground
depending on the sign of .
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The and are connected to an RS-latch, so that the decision made by the latch
is held when clk is low. Functionally therefore, the latch samples the differential input 2
at the rising edge of clk, and determines its sign.

must be at least V for the RS-latch to recognize a change in the logical
states of and . It is thus seen that the comparator needs more time to resolve a
small , and the delay is of the form

tdelay ln
V

2
(9.35)

where is the gain from to (0) (0)
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Figure 9.36 Comparator delay as a function of .

Figure 9.36 shows the simulated delay of a comparator embedded in a second-order
single-bit CT M operating at 1 GS/s. On the x-axis is the quantizer input (2 ) at the
sampling instant, while the -axis shows the corresponding decision delay. A couple of ob-
servations are in order. As expected, the delay increases as the magnitude of decreases.
Further, the variation in delay is larger, when is smaller. The reason is the following.
When the latch tracks the input, the differential current is integrated on the parasitic
capacitors for a small time interval that is determined by device details, as we described
earlier. This integrated version of is what is regenerated. Since is the loop-filter’s
output, it varies with time – if it is large in magnitude, changes in (t) during the integra-
tion phase of the latch have only a small effect on ( (0) (0)). If, on the other hand,

is very small, the details of the waveform during the integration phase play a significant
role on the voltage developed across the parastic capacitances of the latch. For instance,
as small with a large negative slope is likely to result in a smaller ( (0) (0))
than one with a large positive slope. These differences in the developed ( (0) (0))
contribute to the larger spread of the comparator delay. While the analysis above described
the mechanism of input dependent delay in a specific latch circuit, similar mechanisms
come to play in all latches.

Referring to Figure 9.35(a), the output of the RS-latch D can be directly used to excite
the DAC in a single-bit CT M. Since the ADC’s delay t is dependent on , the edge of
the DAC feedback waveform is modulated by the loop-filter in a nonlinear fashion. If an
NRZ DAC is used, this error can be modeled by adding a thin pulse to the DAC output,
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with its height being equal to the transition in the DAC output waveform, and a width t .
As in the case of clock jitter, this error can be modeled by the additive sequence [5]

e [n]
t

T
( [n] [n 1]) (9.36)

at the DAC’s input, as shown in Figure 9.37. The power of e in the signal band is given

DAC

u L(s)

f

e [n] t f ( [n] [n 1])

e

t f ( )

Figure 9.37 Modeling signal-dependent comparator delay in a 1-bit CT M with an NRZ feedback
DAC.

by

J
4p

OSR T

2
(9.37)

where p 0 8 is the probability that D makes a transition. 2 represents the variance
of the comparator’s signal dependent delay, and is assumed to be uncorrelated with the
transitions in the feedback waveform. For the comparator of Figure 9.35(a), whose delay
versus input amplitude curve is shown in Figure 9.36, turns out to be about 18 ps.
Assuming that u A cos(2 f t), we can express the in-band SNR due to metastability as

SNRmetastability 10 log
A2OSR T2

8p 2 (9.38)

Figure 9.38 shows the PSD of CT-MOD2 with the StrongARM comparator of Fig-
ure 9.35(a), with u 0 1 cos(2 f t). The loop-filter is ideal. The signal-dependent
delay of the comparator causes an increased low-frequency noise floor, and it dramati-
cally degrades the in-band SNR. The SNR found from simulation is 27.9 dB. The PSD for
a modulator with an ideal comparator is also shown for comparison. Using (9.38) with
A 0 1 and 18 ps yields an estimate of 27.8 dB, in good agreement with results
from transistor-level simulations.

We thus see that signal-dependent delay of the comparator could be a serious problem
in CT Ms designed for high speed/precision. A single-bit modulator is particularly bad
in this respect, since an error in the DAC pulse width results in an error proportional to the
modulator’s full scale.

A way of overcoming this problem is to clock the DAC long enough after the ADC,
so that the probability that the ADC has made a decision is very high. In other words, we
could deliberately introduce excess delay into the loop so as to give enough time for
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the ADC to make a decision. This way, the input to the DAC, when it samples the ADC
output, is very close to Vd or ground. Consequently, the latch in the DAC has very little
delay, which also implies a very small data-dependent jitter.

The deliberately introduced delay is not problematic, as the loop can be compensated,
and its NTF restored by coefficient tuning and by introducing a direct path around the
quantizer, as discussed earlier in this chapter. The question at hand is – how much time
should the DAC wait, after the ADC has been clocked? A very convenient (and robust)
choice is to clock the DAC a half-clock cycle later [13], as shown in Figure 9.39. As seen
from the PSD in Figure 9.39, the in-band SNR is only 3 dB short of what can be achieved
by an ideal comparator.

Other strategies that mitigate the effect of signal-dependent comparator delay observe
that since metastability manifests in a manner similar to clock jitter, techniques that address
the latter will also be effective for the former. A case in point is the use of a multi-bit
quantizer, which is beneficial on two counts. First, since the OSR needed to achieve a
desired SQNR over a given signal bandwidth is reduced, jitter due to metastability is a
smaller fraction of the clock period. Further, only the output of the comparator “closest”
to experiences a delay different from that of the other comparators. Thanks to multi-bit
operation, this output can influence only a fraction of the feedback waveform, alleviating
problems due to signal-dependent delay. Similarly, using an impulsive DAC (implemented
by using switched-capacitor techniques) also addresses comparator metastability, since the
amount of charge delivered into the loop-filter is independent of the ADC delay.

u(t)
z 1

a0

z 1 z 1 z 1

a1 a 2 a 1 1(t)

1(t)

D
[n]
clk

[n 1]

Figure 9.40 An FIR DAC mitigates the effect of comparator metastability due to the cascade of
latches, as well as by reducing the contribution of an individual latch to 1(t).

The FIR feedback DAC [9, 10], as we have seen, is a attractive way of mitigating the
effect of clock jitter. It should, therefore, be expected to address the problem of comparator
metastability. The chain of latches are particularly effective in reducing signal-dependent
delay, as illustrated in Figure 9.40. is the output of the single-bit quantizer, and exhibits
significant signal-dependent delay. However, since [n] is weighted by a0( 1), its con-
tribution to 1(t) is reduced by this factor. One could deliberately choose a0 0, which
is equivalent to introducing a 1-cycle delay into the loop, to avoid direct dependence on
[n]. Since [n 1] [n N 1] are derived from [n] through a chain of flip-flops,

successive regeneration renders data-dependent jitter a non-issue.
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9.7 Conclusions

In this chapter, we examined the influence of the primary nonidealities on the performance
of CT Ms, namely excess loop delay, time-constant variations in the loop-filter, clock
jitter, and comparator metastability. Excess delay, as in any feedback loop, can render the
modulator unstable. However, this can be addressed by a combination of coefficient tuning
and adding a direct path around the quantizer.

Time-constant variations in the loop-filter modify the NTF and can spell potential
trouble, but these can be (easily) addressed by RC-tuning loops.

Clock jitter is a serious concern in CT Ms (significantly more so than their discrete-
time counterparts). We gained an intuitive understanding of the mechanisms by which
clock jitter degrades the performance of a CT M and examined various approaches that
address the effects of jitter. The use of an NRZ DAC pulse, along with FIR feedback was
seen to be a good way of addressing this problem. The loop can be compensated for delay
introduced by the FIR DAC, and we saw that the NTF can be restored exactly by coefficient
tuning, and through the use of a direct path compensating FIR DAC.

The signal-dependent delay of the comparator degrades in-band SNDR in a manner
similar to clock jitter. We described various ways of mitigating this problem.
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CHAPTER 10

CIRCUIT DESIGN FOR
CONTINUOUS-TIME DELTA-SIGMA
MODULATORS

In the chapters so far, we have covered the architectural aspects of continuous-time
modulators. We now know how to choose an NTF and the oversampling ratio to

achieve a desired in-band SQNR, and how to pick an appropriate loop-filter topology. We
understand the effect of practical nonidealities like excess delay, time-constant variations
and quantizer metastability on modulator performance, and how to mitigate these prob-
lems. In this chapter, we explore circuit design techniques for the various building blocks
of CT Ms. As one should expect, a practical implementation will most likely introduce
“new” nonidealities. What should we expect these nonidealities to be?

The building blocks will be realized using transistors, which need time to operate,
and which are fundamentally noisy and nonlinear. First, this means that the finite delay
associated with the transistors introduces undesired poles and zeros in the loop-filter trans-
fer function, which will modify the NTF. Next, thermal and flicker noise of the transistors
introduce noise over and above that due to quantization. Finally, the loop-filter, which is
expected to be perfectly linear, is no longer so. As we see later in this chapter, this can
significantly degrade the in-band signal-to-noise ratio.

While a thorough awareness of the underlying theory is fundamental, understand-
ing and mitigating implementation-related nonidealities is key to realizing a CT M that
works as intended. This chapter is focused on the design of the circuit blocks needed to
realize a CT M, their main nonidealities, and what one can do to mitigate them.
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10.1 Integrators

Integrators can be implemented in many styles. Figure 10.1 shows three popular alter-
natives that realize an inverting integrator. The figure shows single-ended circuits – in
reality, most signal paths are realized in fully differential form. These diagrams should be
interpreted as the single-ended equivalent of a fully differential realization.

−

+
R

C

R

C

Opamp-RC OTA-RC Gm-C

(a) (b) (c)

Gm 1 R

C

Figure 10.1 Three techniques to realize an integrator.

Figure 10.1(a) shows an active-RC integrator. Assuming an ideal opamp,

V (s)
1

sCR
V (s) (10.1)

What are the good attributes of such an integrator? If the opamp is ideal, its inverting
terminal is a virtual ground. is thus converted into a current R in a very linear
fashion, thanks to the linearity of R. If C is linear, then is linearly related to ;
in other words, if the opamp is ideal, a perfectly linear integrator is possible. Parasitic
capacitances, which are bound to exist at every node, are harmless due to the following.
A parasitic at the output of the opamp does not affect , since the opamp is a voltage
controlled voltage source whose output impedance is zero. Parasitic capacitance at the
virtual ground node has no consequence either, since the voltage across it does not vary.
Further, since the output impedance of the integrator is zero, driving subsequent integrators
is not a problem.

V

Figure 10.2 The limited swing problem in a CMOS opamp that achieves a low output impedance.
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If the active-RC structure has all that one can wish for in an integrator, what is the
need to invent other topologies, like those in Figure 10.1(b) and (c)? It turns out that
designing an opamp that achieves a low output impedance is problematic, as illustrated
in Figure 10.2. The figure shows a conceptual design of an opamp with a low output
impedance, achieved by using a common-drain output stage. We denote the threshold and
overdrive of all transistors (assumed identical) by V and V , respectively. can go as
high as V V before the transconductor goes into the triode region. This means that

can go as high as V V 2 V while maintaining all devices in saturation (needed
to achieve high gain). On the lower side, the least can be is V , below which the
current source biasing the output stage is driven into the linear region. The peak-to-peak
swing of , therefore, is V V 3 V . If we assume that V 1 2 V, V 0 5 V,
and V 100 mV, this turns out to be 400 mV. It is thus seen that the common-drain
stage, needed to achieve the low output impedance needed in the opamp, severely restricts
its output swing. A reduced integrator swing necessitates larger capacitor values than
would otherwise be necessary. More important, since the swing at the loop-filter output
is reduced, the step size of the ADC is now smaller, which complicates its design. Thus,
an opamp-RC integrator, while having several attractive properties, also has significant
disadvantages. This is where the OTA-RC integrator, where the opamp is replaced by an
operational transconductance amplifier (OTA), scores.

An ideal OTA is a voltage-controlled current source, whose transconductance is infi-
nite. Thus, the virtual ground node of the OTA-RC integrator, shown in Figure 10.1(b), is
zero (as in the opamp-RC case). This means that the integrator is linear (assuming linear
passives). The output impedance of the integrator is zero – in this case, achieved through
the use of strong negative feedback. Thanks to this, the integrator is insensitive to parasitic
capacitances, and can drive other integrators. Finally, since a common-drain amplifier is
not needed, the output can swing to within V of the rails. The peak-to-peak swing pos-
sible is thus V 2 V , which is a big improvement when compared to the opamp-RC
structure.

The impressive performance of an OTA-RC integrator is achieved through negative
feedback. By nature, this limits the bandwidth of operation to a fraction of the intrinsic
speed of the OTA. The transconductance-capacitance (or Gm-C) integrator attempts to mit-
igate the speed issue by using an open-loop structure, as shown in Figure 10.1(c). Here,
is converted into a current by a transconductor G (chosen to be 1 R), which is integrated
on the capacitor C, to generate the output voltage. The input impedance of the integrator
is infinite – so cascading integrators is easy.

Unfortunately, the Gm-C structure is problematic on several fronts. There are many,
many ways of implementing a transconductor. Those that use open-loop techniques have
limited linearity, which is strongly dependent on device characteristics. Others use feed-
back to linearize the transconductor, which reduces speed of operation. Further, the inte-
grator is sensitive to parasitic capacitances. Gm-C integrators are useful only when speed
is the primary consideration, with linearity being less important.

Since the opamp-RC integrator severely restricts output swing, an opamp in the sense of Figure 10.1(a) is rarely
used. The “opamp” name and symbol are often (mis)used, in the sense that one actually means “OTA” when
talking about an opamp. We are guilty of the same indiscretion.
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From the discussions above, the OTA-RC structure appears to be the best choice, and
as such warrants a more detailed study. We begin with the simplest possible OTA structure,
namely the single-stage OTA.

10.1.1 The Single-Stage OTA-RC Integrator

R

C

G

1

R

C

G

(a) (b)

1

Figure 10.3 (a) A single-stage OTA-RC integrator and (b) use of a zero-canceling resistor to
eliminate the RHP zero.

Figure 10.3(a) shows an OTA-RC integrator based on a single-stage OTA. The OTA
has a finite G . Other nonidealities like parasitic capacitances at the input and output, and
finite output resistance are neglected. Unlike in the ideal case, the virtual “ground” node is
no longer at ground. Straightforward analysis shows that

1 G R
(10.2)

and
V (s)
V (s) sCR

unity-gain

freq. shift

1
sC

G

RHP zero

(10.3)

where G R (G R 1). The finite G causes a shift in the unity-gain frequency,
reducing it by a factor . Further, we see that the transfer function of the integrator has a
zero in the right-half plane (RHP). Intuitively, this is due to multiple paths from the input to
the output – one through the transconductor, and the other through the integrating capacitor.
The RHP zero adds phase lag, which is equivalent to adding excess loop delay.

The shift in the unity-gain frequency can be addressed by modifying the capacitor or
resistor values by . The RHP zero can be eliminated by introducing a resistor of value
1 G in series with the integrating capacitor. The result, shown in Figure 10.3(b), achieves
a transfer function ( 1 sCR).

The single-stage OTA has some practical problems. The output conductance of the
transistors results in an integrator with finite dc gain, which reduces further with load-
ing. Further, the simplest possible transistor-level implementation of a single-stage OTA,
namely the differential pair, has a limited output swing. Figure 10.4 shows the simplified
schematic of a fully differential single-stage OTA based on the differential pair. Since inte-
grators in the loop-filter need to be cascaded, the input and output common-mode voltages
have to be the same. This means that cannot exceed the threshold voltage of the NMOS
transistor, no matter how high the supply, which is a severe limitation. Finally, as we will
see later in this chapter, nonlinearity can be a significant problem unless G R is very large.
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Simply increasing G to achieve linearity is not power efficient. A way of addressing the
limitations of a single-stage OTA is to use a two-stage design, which we discuss next.

CMFB

V

V V

VV

Figure 10.4 Fully differential single-stage OTA based on a differential pair.

10.2 The Miller-Compensated OTA-RC Integrator

C

G 2

1 G 2

GR

C

2

i1

i1

i2i2

Figure 10.5 An OTA-RC integrator employing a two-stage Miller-compensated OTA.

A Miller-compensated OTA can be used in place of a single-stage OTA, as shown
in Figure 10.5. A second transconductor G 2 is cascaded with the first. For stability
purposes, a compensating capacitor C is placed across G 2, and the resulting RHP zero
is canceled by the resistor 1 G 2 in series with C .

Why is the Miller-compensated OTA an improvement over a single-stage OTA? For
one, the dc gain of the integrator is due to two gain stages, and is therefore much higher.
The common-mode voltage of the internal node is not constrained in any way, unlike in
a one-stage OTA. Thanks to this, the output can swing to within one overdrive voltage of
the rails. Further, the use of cascodes at the output of the first stage improves gain without
degrading the maximum swing at the output of the second stage. Since the dc gain that
can be achieved with a two-stage OTA is inherently more than in a single-stage design,
cascading integrators is not as problematic.

How does the performance of an integrator with a Miller-compensated design com-
pare with that which uses a single-stage OTA? We give an intuitive explanation below.
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Referring to Figure 10.5, and 2 must be very small. This means that the voltages
across C and C are approximately the same. Denoting the current through C by i1, it
follows that the current through the compensating capacitor is

i2 i1
C

C
(10.4)

Since i1 R, and i2 is the output current of the first stage, it follows that

G R

C

C
(10.5)

With a single-stage OTA, recall that (G R). It is thus seen that using a Miller-
compensated OTA can be thought of as using a single-stage OTA whose G is higher by
a factor C C . Another way of interpreting the result above is the following. For the
integrator to be ideal, must be zero. From (10.5), this means that G R(C C ) 1
Thus,

G

C

OTA’s UGB

1
RC

Integrator’s UGB

(10.6)

which is intuitively satisfying.

From our approximate analysis, we concluded that the benefits of using a Miller-
compensated OTA are in inverse proportion to C . It is thus tempting to set it to zero.
This is not practical, however, because our analysis neglected parasitic capacitances at
the outputs of the first and second stages. These parasitics will degrade the phase margin
(or render the integrator unstable) unless C is made sufficiently large. To first-order, the
transfer function of the integrator based on a Miller-compensated OTA can be shown to be

V (s)
V (s)

1
sCR

1
1

(10.7)

The effect of finite OTA bandwidth is to add an extra pole to the integrator transfer function.
If parasitic capacitors not modeled in Figure 10.5 are considered, more poles and zeros
make their appearance in the transfer function. Further, the output resistance of G and
G 2 results in an integrator with a finite dc gain. It is thus seen that fixing the problems
associated with a one-stage OTA causes the integrator transfer function to become a high-
order one. A natural question that arises is how all these poles influence the loop’s NTF,
and what one can do about it. This, and related issues, are discussed in Section 10.8.

10.3 The Feedforward-Compensated OTA-RC Integrator

A two-stage OTA can also be compensated using feedforward. The basic idea is shown
in Figure 10.6. Rather than add a compensating capacitor across the second stage, as in
Miller compensation, a third transconductor G 3 senses and pumps current into the
output node. This provides the “fast path” of the feedback loop. The cascade of G and
G 2 forms the high dc-gain (and slow) path. Thanks to the two-stage design, the integrator
has high dc gain, as in the Miller-compensated OTA. At first sight, it might seem that
the feedforward transconductor increases power dissipation. It turns out that G 3 can be
implemented by reusing the bias current needed anyway to realize G 2.
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Figure 10.6 An active-RC integrator using a feedforward-compensated OTA.
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Figure 10.7 Comparison of (a) two-stage Miller-compensated and (b) feedforward-compensated
OTAs. r1 and r2 model the output resistances of the transconductors.
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How does a feedforward-compensated OTA fare in comparison with a Miller-
compensated one? Without compensation, the frequency responses of both designs are
the same. As shown in Figure10.7, their unity-gain frequencies are G G 2 c 1c 2.
With Miller compensation, C has to be chosen so that the unity-gain frequency G C is
smaller than the pole due to the second stage, which is approximately at G 2 (c 1 c 2).
The open loop-gain of the OTA, therefore, begins to roll off at 20 dB/dec at a frequency
much lower than G C . With feedforward compensation, G 3 should be chosen such
that the magnitude response rolls of at 20 dB/dec when it crosses 0 dB. The unity-gain fre-
quency of the compensated amplifier is G 3 c 2, which is higher than G G 2 c 1c 2.
From Figure10.7, it is apparent that the feedforward-compensated structure achieves a
much larger bandwidth (for the same power dissipation) when compared to its Miller-
compensated counterpart. This makes sense, since the philosophy behind achieving sta-
bility by Miller compensation is to slow down the first stage by adding C . Deliberately
adding a large capacitor and charging/discharging it increases the Miller OTA’s power dis-
sipation.

Given that feedforward compensation achieves a much higher bandwidth for the same
power dissipation, why is it not used more often? For instance, it is the Miller OTA that
is the workhorse of discrete-time modulators. Graduate courses on analog integrated
circuits, where one is introduced to opamp design, analyze Miller-compensated OTAs in
great depth. Feedforward, however, is given short shrift, if covered at all. Most commercial
discrete opamps are also Miller-compensated. It is only natural to wonder why this is so.

Since feedforward causes zeros in the transfer function of the integrator, it results
in slow-settling transients. This is generally unacceptable in switched-capacitor circuits,
where the samples of the OTA output are of interest. A Miller OTA does not have such
problems, though it is slower than a feedforward OTA – making it an appropriate choice for
use in a discrete-time modulator. In a CT M, the entire output waveform is relevant,
and slowly settling transients do not matter. This means that feedforward OTAs can be
used.

Observing the responses in Figure10.7 also reveals that if the OTAs are enclosed in
a negative feedback loop, the Miller amplifier becomes less stable as the feedback factor
is increased. Unity feedback thus forms the “worst case” for such an OTA. However,
the feedforward structure becomes less stable when the feedback factor is reduced – and
a feedback factor of 1 results in the most stable amplifier. This makes a feedforward-
compensated opamp less suitable as a general-purpose discrete device.

While we discussed a second-order feedforward-compensated OTA, high-order struc-
tures can be conceived as well [1]. An example is shown Figure10.8(a). The transfer
function is

A(s)
G 1
sC 1

G 2G 3

s2C 1C 2

G 2G 4G 5

s3C 1C 2C 3
(10.8)

For stability, the magnitude response must cross the 0-dB level at about 20 dB/decade, like
in the second-order case. The advantage with multi-stage feedforward is that the transition
region of the magnitude response can be tailored to be narrow, allowing high gain to be
maintained over a wider bandwidth before rolling off, as seen in Figure10.8(b). As with
all high-order systems, such OTAs are conditionally stable. When the modulator is over-
driven, stages can saturate and precipitate instability due to overloading of internal stages.
While careful and extensive simulations are needed to ensure stability over all operating
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Figure 10.8 (a) A multipath feedforward OTA and (b) magnitude responses of second and high-
order OTAs.

conditions, a useful practice is to ensure that the first-order path saturates last. This way,
saturation of internal nodes will still result in a stable system as it recovers from overload.

10.4 Stability of Feedforward Amplifiers

When a feedforward OTA is enclosed in a loop with unity-gain feedback, the loop-gain
function is of the form

LG(s)
k1
s

k2

s2
k

s
(10.9)

The magnitude and phase plots of the loop-gain function for a third-order example (with
k1 2 5 k2 0 5 k3 0 1) are shown in Figure10.9. Around the unity-gain frequency,
the magnitude response rolls off at 20 dB/decade, and the phase lag is 90 . The phase
margin for this particular design is, therefore, almost 90 . Interestingly, at 1 0 2 rad/s,
the phase lag of the loop-gain function is 180 , and its magnitude is 12.5 (which is 1).

The fact that the system is stable when LG is (much) greater than unity with LG

180 is somewhat disorienting. After all, we know from Barkhausen’s criterion that a
feedback system is unstable if LG 1 and LG 180 . Our situation seems much
worse, with LG 1 when the loop-gain’s phase is 180 . Yet, we know that the closed-
loop system is stable (as established using the Nyquist criterion or root-locus methods).
How do we resolve this paradox?

First, we examine the intuition behind the Barkhausen criterion. Consider the feed-
back loop shown in Figure10.10(a). Assume that at 1, LG( j 1) 1 and LG( j 1)
180 . To understand why the system is unstable, we perform a gedanken experiment. We
replace the adder of Figure10.10(a) with a one-pole two-throw switch, as shown in part
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Figure 10.9 Magnitude and phase responses of the loop-gain of an example third-order
feedforward-compensated loop.
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Figure 10.10 (a) Feedback system. (b) Loop is initially opened, and excited at a frequency 1 for
which LG( j 1) 1 and LG( j 1) 180 . The position of the switch is then changed to close
the loop, and the system oscillates at 1. (c) Waveforms at a©, b©, and c©.
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(b) of the figure. Initially, the switch is at position a©, where it is excited by a sinusoid
A cos( 1t). Since LG( j 1) 1, the sinusoid at b©, in steady state, is also A cos( 1t),
which is exactly identical to the signal at a©, as shown in Figure10.10(c). The position
of the switch is then changed to b©. As far as the amplifier is concerned, it makes no
difference whether its input excitation is from the independent source or from to its own
(inverted) output (since the two outputs are indistinguishable). Thus, the system continues
to oscillate at 1 even after the switch has changed state.

a©

b©

c©

switch at position a© switch at position b©

A

10A

1

LG(s) LG(s)

A cos( 1t)

a©

b©

u
c©

s(a) (b)

1

(c)

Figure 10.11 (a) Feedback system. (b) Loop is initially opened, and excited at a frequency 1
for which LG( j 1) 12 5 and LG( j 1) 180 . The position of the switch is then changed to
close the loop – the loop is eventually “quenched”. (c) Waveforms at a©, b©, and c©. A system with
LG( j 1) 1 and LG( j 1) 180 can be stable if the “fast” feedback is sufficiently strong.

Based on the arguments above, we begin to wonder how it is even possible for the
system to be stable when the loop-gain is greater than 1, when its phase is 180 . Refer-
ring to Figure10.11(b), when the switch is at position a©, the signal at b© in our example
system is amplified 12.5 times. Thus, the signals at a©, b©, and c© are as shown in gray
in Figure10.11. One would then be tempted to think that the amplitude of the sinusoid in
the loop would grow without bound when the loop is closed. After all, the fedback signal
is 12.5 times the input, and this should regeneratively build up to infinity as it circulates
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around the loop. However, we know that this is not so. What then, is the fallacy in our
argument?

The key point is to realize the implication of saying LG( j 1) 12 5 180 . This
statement means that if the open loop system is excited by a sinusoid at 1, the output is

12 5 times larger in steady state. At the risk of sounding redundant, we emphasize that it
does not mean that the output will be 12 5 the input instantaneously. In our example, the
moment we throw the switch to position b©, the input at c© experiences a step jump (from
A to 10A) as shown in Figure10.11(c). The instantaneous response of the amplifier will
be dominated by the first-order path which has a transfer function 2 5 s. Thus, the output
at immediately after the switch changes state is a ramp, that after inversion causes the
signal at b© to reduce, as seen in Figure10.11(c). Note that this is in the opposite direction
of what we would have concluded if we assumed that steady state behavior was reached
instantaneously. The reduction in the amplifiers output is fed back to the input, and the
sinusoid that was circulating in the loop is “quenched” and dies down to zero, as it should
in a stable system without a source. The quick feedback in the right direction is due to the
high gain of the first-order path of the loop-gain. If this is not high enough, the correction
(after the switch is thrown to b©) would not be enough, and the loop would break into
oscillation. This is consistent with the frequency domain argument that reducing the gain
of the 1 s path will result in a smaller phase margin, and will eventually cause instability.

10.5 Device Noise in Continuous-Time Delta-Sigma Modulators

The components of the loop-filter, namely resistors and transistors, inject thermal (and 1 f )
noise into the CT M. We first examine the noise of the building block of the loop-filter –
namely the integrator. Figure10.12 shows the noise sources in an active-RC integrator that

R

C

G

4kTR

4kT G

Figure 10.12 Noise sources in an active-RC integrator that uses a single-stage OTA.

uses a single-stage OTA. The output current noise spectral density of the OTA is 4kT G ,
where is dependent on design details. The input-referred noise voltage spectral density
of the integrator can be shown to be

S ( f ) 4kT R
G

(10.10)

Recalling that G R 1 for a good integrator, it follows that S 4kT R. As we will
see going forward, we need to worry only about the in-band noise spectrum. What does it
cost to reduce the in-band thermal noise of the integrator by 3 dB? R must be reduced by a
factor of 2. For everything else to remain the same, G and C should increase by the same
factor. Since all impedances have reduced by 2 , power dissipation increases twofold.
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Figure 10.13 An example second-order CIFF CT M with noise sources. A resistive NRZ
feedback DAC is assumed.

How does the noise of the loop-filter affect the in-band SNR of the modulator? We
illustrate this with a second-order CIFF example, shown in Figure10.13. The active-RC
integrators use single-stage OTAs. The feedback DAC is assumed to be resistive. The effect
of all noise sources can be referred to the input of the modulator and consolidated into an
equivalent noise voltage, whose spectral density we denote by S ( f ). The equivalent
model of the modulator, assuming additive quantization noise, is shown in Figure10.14.
The STF has a dc gain of unity; and nulls at multiples of f , thanks to the CT M ’s
inherent anti-aliasing property. The peaking in the STF is due to the CIFF loop-filter
architecture.

u(t) STF( f )

e[n] NTF(z)

[n]
Seq( f )

a©

STF

0

1

2

1 2
f f

b©

Figure 10.14 Equivalent CT M model including thermal and quantization noise sources. S ( f )
represents the equivalent input referred noise spectral density of the loop-filter and feedback DAC.
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Figure 10.15 Noise spectral densities at various points in Figure10.14.

Figure10.15 shows the noise spectral densities at various points in Figure10.14. At
point a©, S ( f ) has been shaped by the STF, and the resulting noise density is

S ( f ) S ( f ) STF( f ) 2 (10.11)

Since the continuous-time output at a© is sampled to yield the sequence at b©, it follows
that the thermal noise component of [n] is

S ( f ) f S ( f k f ) (10.12)

We are only interested in the in-band noise spectral density, since out-of-band noise will
be eliminated by the decimation filter anyway. From Figure10.15, we see that noise at a©
from around multiples of f will alias into the signal band after sampling at b©. However,
due to the inherent anti-aliasing property of the CT M, noise around multiples of f is
virtually eliminated by the action of the STF. Thus, sampling does not increase the in-band
noise, even though there is aliasing. As far as thermal noise calculations are concerned,
therefore, only S ( f ) in the signal band is relevant.

As a corollary, if the STF did not have nulls around multiples of f , we would have to
account for noise that folds into the signal band from around these frequencies. The STF
will not have nulls around f when the loop-filter is time varying, which is the case when
a switched-capacitor feedback DAC is used.

Coming now to the specific case of our CIFF CT M of Figure10.13, the input-
referred noise spectral density at low frequencies (neglecting noise from the OTAs) is given
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by
S ( f ) 8kT R

input and DAC
resistors

4kT R2(2 f RC1)2

second integrator’s noise
shaped by gain

of the first integrator

(10.13)

From the expression above, it is clear that the noise due the second integrator becomes
negligible when referred to the modulator’s input due to the high gain of first integrator in
the signal band. This means that the rest of the loop-filter can be impedance scaled with no
consequence on the in-band thermal noise, thereby reducing power dissipation. Another
implication of this observation is that increasing the order of the NTF can be done with
very little extra power, since the additional integrator can be impedance scaled.

Since the noise of the rest of the loop-filter (within the signal bandwidth) is reduced by
the gain of the first integrator when referred to the input, the CIFF and CIFF-B structures
are more tolerant of noise (and distortion) from the rest of the loop when compared to their
CIFB counterparts.

10.5.1 Thermal versus Quantization Noise

The mean square in-band noise of a CT M is comprised of two parts: a thermal compo-
nent, denoted by N and (shaped) quantization noise component, which we denote by N .
Due to oversampling, N is largely flat in the signal bandwidth (if we neglect 1 f noise).
Suppose that we want to achieve a CT M with a desired peak SNR. The maximum signal
amplitude (MSA) is determined by the NTF and the number of levels in the quantizer. The
peak SNR for a sinusoidal input is given by

SNR
(MSA2 2)
N N

(10.14)

Clearly, many choices of N and N will result in the same peak SNR. A natural question
that arises during design is how one should partition the noise budget into thermal and
quantization components. Figure10.16 shows three potential strategies. In strategy A, the
budget is dominated by the quantization noise component. One could conceivably make
N and N equal as in strategy B, or let thermal noise dominate, as in strategy C. Which

A B C

N

N N

NN

N

Figure 10.16 Possible ways of partitioning thermal and quantization noise components to achieve
a desired peak SNR.

of these yields a modulator with the lowest power dissipation? To answer this question,
let us arbitrarily pick strategy A and ponder what would happen to the power dissipated
in the CT M when we varied the relative contributions of N and N . If we decide to
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increase N by a factor of 2, N would have to decrease by somewhat less than a factor of
two. Now, increasing N by 2 is accomplished by impedance scaling the loop-filter by
the same factor, and this reduces its power dissipation by a factor of 2. How do we reduce
N ? This can be done in a variety of ways – for instance, the NTF can be made more
aggressive by increasing its out-of-band gain. Alternatively, the OSR and/or the order of
the NTF can be increased slightly. The former does not result in any increase in power
dissipation. Increasing OSR/order impact the power dissipation only slightly. Overall,
therefore, increasing N by two reduces the CT M ’s power dissipation by a factor of
two. Extending this argument further, it seems advantageous to allocate more and more of
the noise budget to thermal noise (while reducing N ). Beyond a certain point however,
reducing in-band quantization noise begins to become difficult too. Thus, a power-efficient
design is one where thermal noise accounts for a large part (around 75%) of the total noise
budget. A good rule of thumb is to keep N about 12 dB lower than the thermal noise.

There are two other reasons to keep N N :

N is repeatable. With multi-bit quantization, N can be variable, necessitating com-
parator calibration and extra margin on the specifications.

N can contain harmonics.

10.6 ADC Design
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Figure 10.17 Block diagram of a flash ADC.

The ADC used in the quantizer can be realized in many ways. Which ADC archi-
tecture is particularly suited to a loop? Given that the ADC is going to be embed-
ded in a strong negative feedback loop, the natural choice is to use the flash architecture.
Flash ADCs use parallelism to achieve high-speed operation at the expense of hardware
complexity and power dissipation. The operating principle of a flash ADC is shown in
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Figure 10.17. An array of clocked comparators compares the input with a set of refer-
ences, usually generated using a resistor ladder. The comparison occurs at a time instant
defined by the clock. Each comparator in the array generates a logical output t that is 1 if

(at the sampling instant) is greater than its reference (and vice versa). An M-step flash
ADC employs M comparators, and the output of the comparator array is the so-called ther-
mometer code, which is subsequently converted into binary form, and forms the output of
the modulator. While Figure 10.17 showed a single-ended diagram for simplicity, practical
realizations are fully differential.
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Figure 10.18 A comparator based on a sense amplifier.

The basic building block of the flash ADC is the clocked comparator. Several com-
parator circuits can be conceived. Figure 10.18 shows one derived from a sense amplifier.
It consists of two clocked CMOS inverters connected back-to-back, and operates in three
non-overlapping phases. C are the reference storage capacitors, while c denotes the par-
asitic capacitance from nodes x and to ground. During 1, which is the sampling phase,
the reference storage capacitors are connected in series with the differential inputs and

. The transisors are off. The differential voltage developed across x and is given by

C

C c
( ) (Vref p Vref m) (10.15)

The sampling instant of the comparator is defined by the falling edge of 1. Regeneration
occurs in 2, and by the end of this phase, the potentials at x and reach V or nd. The
reference storage capacitors are also refreshed during 2. 3 is a short phase that clears
memory of the latch (and prevents hystersis) by shorting x and . The next comparison
cycle then begins. Since the voltage at x/ is a valid logic level only during the latter part of

2, the output is held on CMOS inverters that are clocked using ˆ2 to generate the logical
output t valid for a whole clock cycle. The delay of the comparator is that between the
falling edge of 1 and the rising edge of ˆ2.

In practice, threshold voltage mismatch of the MOS devices forming the regenerative
pair causes static offset. Differences in parasitic capacitance on nodes x and result in
dynamic offset, which can often be much larger than the static offset. It turns out that
dynamic offset depends on the difference between the common-mode voltage of x and at
the end of 1, and the natural threshold of the regenerating inverter. In a sense-amplifier-
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based comparator, this difference can be made small by appropriate choice of Vcm and
inverter geometry.

A disadvantage of the sense-amplifier-based comparator is the complexity of generat-
ing and distributing the various clocks needed. In high-speed designs, the power dissipated
in the clock distribution network can become significant.
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clk
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a b
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t
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Figure 10.19 A comparator based on the StrongARM latch.

A comparator with simpler clocking, based on the StrongARM latch, is shown in
Figure 10.19. In steady state, the reference storage capacitors C have voltages (Vref p Vcm)
and (Vref m Vcm) across them. Thus,

( ip im) (Vref p Vref m) (10.16)

As described in Section 7.9, when clk is low, the nodes x and are pulled to V .
Regeneration begins when clk goes high. x and attain valid logic levels during the latter
part of this phase. The decision is held for a whole clock cycle by the RS-latch. C , chosen
to be much smaller than C , serves to refresh the reference voltage stored across the latter.

1 and 2 are non-overlapping clocks (and can even be operated at a lower clock rate). An
advantage of this way of subtracting references is that no switches appear in series with
the high-speed signal path. Since C C , the 1 and 2 switches can be small, thereby
reducing parasitic capacitances at a and b.

The “sampling instant” of the StrongARM structure is somewhat fuzzy, but it can be
expected to occur shortly after clk goes high. While simplified clocking and ease of ref-
erence subtraction is a definite advantage, the StrongARM latch suffers from an increased
dynamic offset when compared to the sense-amplifier-based structure. The reason is the
following. When clk goes high, the pull-down network is activated. Thus, the the common-
mode voltage of x and , which was V at the end of the previous phase, drops. Mismatch
in parasitic capacitance at x and will result in a differential voltage to be developed across
these nodes, which manifests as comparator offset.

Figure 10.20 shows another comparator based on the StrongARM latch, where refer-
ence subtraction is accomplished through additional transistors connected in parallel with
the input transistors. Many other variants exist.

As discussed in earlier chapters, comparator offset is of no consequence in a single-
bit modulator. In a multi-bit CT M, however, offsets modify the shape of the quantizer’s
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Figure 10.20 Another comparator based on the StrongARM latch.

Figure 10.21 In-band SNDR of a third-order, 15-level CT M in the presence of random offset
in the comparator thresholds.
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transfer curve. As a result, the in-band quantization noise and the maximum stable ampli-
tude change. Figure 10.21 shows the simulated in-band SNDR of a third-order modulator
with varying levels of comparator offset. The quantizer has 15 levels, OSR 64, and the
NTF is maximally flat, with an out-of-band gain of 2.5. The input is a 6 dBFS tone in the
signal band. Comparator offsets are assumed to be Gaussian distributed, with off denot-
ing the standard deviation of offset normalized to the nominal step size. 200 Monte Carlo
simulations are performed for each value of off . It is apparent that the SNDR can degrade
significantly (by about 20 dB) when off is large. It is prudent, therefore, to ensure that
comparator offsets are kept small. Figure 10.21 indicates that off 0 05 is a good value
to target, in our example.
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Figure 10.22 MSA of the CT M with varying off .

Figure 10.22 shows the MSA of the CT M as a function of comparator offset. We
see that this is also affected, though not quite as much as the in-band SNDR.

From the discussion above, we see the following. While flash ADC errors are less
critical (when compared to feedback DAC nonidealities), worst-case comparator offsets do
have to be restricted to a fraction of the nominal step size. It is not uncommon, therefore, to
correct for these offsets. To do so, a means to control offset is necessary. One way of doing
this is shown in Figure 10.23. The preamplifier output ( ), which drives the Stron-
gARM latch, is the amplified difference ( ) (Vref p Vref m). I is a (digitally)
programmable current source that modifies the input-referred offset of the preamplifier.
During power on, for instance, I can be set so as to minimize the comparator offset.

10.7 Feedback DAC Design

The closed-loop transfer function of a negative feedback system is critically dependent on
the characteristics of the feedback block. A CT M, whose in-band SNDR is critically
influenced by the noise and linearity of the feedback DAC, is no exception to this rule. In
this section, we discuss various ways in which the DAC can be implemented, and their
relative merits.
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Figure 10.23 Offset canceled comparator employing a preamplifier and StrongARM latch.
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Figure 10.24 (a) Conceptual single-ended schematic of a CT M using a resistive DAC and (b)
practical implementation of a differential unit element, feeding into an OTA-RC integrator.
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10.7.1 Resistive DACs

As we saw earlier in this chapter, the OTA-RC structure is a compelling choice for imple-
menting the integrators comprising the loop-filter. A natural approach to realize a DAC is
to take advantage of the virtual ground facilitated by the OTA, as shown in the conceptual
single-ended schematic of Figure 10.24(a). Most practical CT M designs, however, are
differential, and Figure 10.24(b) shows how the DAC connects to the OTA. If we assume
an M-step quantizer, the ADC output is an M-bit thermometer code. Each thermometer
bit t drives a differential DAC unit element, which is formed by a pair of resistors each of
value M R. Depending on the state of t (representing the lth thermometer bit output),
the resistors are connected to the positive or negative references (Vref p Vref m). If t is held
for a whole clock period, an NRZ pulse shape results. Such DACs are also referred to as
switched-resistor DACs.

We will denote the supply voltage by V ; the common-mode voltage at the opamp
input is chosen to be 0 5 V . In the best case where Vref p V and Vref m 0, the full-
scale differential current of the DAC is V R. The spectral density of the current noise
is given by 8kT R. When referred to the modulator’s input, this translates into a noise
voltage spectral density of 8kT R.

What are the merits of a resistive DAC? For a given full-scale current, such a DAC
adds the smallest possible thermal noise. Modulators that use such DACs, therefore, tend
to be very power efficient. DAC layout tends to be clutter-free, thanks to the simplicity of
the unit element.

What are the problems associated with a switched-resistor DAC? The loop-gain
around the input OTA is reduced due to the resistive loading at its virtual ground node.
As a result, the low-frequency noise of the OTA, when referred to the CT M input, is
gained up by a factor of two. Further, the reduced loop-gain degrades the linearity of the
integrator, and must be tackled by appropriate OTA design.

Often, high-resistivity polysilicon resistors are not available in a fabrication process.
This results in physically large resistors, particularly in low-bandwidth designs. The dis-
tributed parasitic capacitance of the resistor can then be significant, adding excess loop-
delay, over and above the delay introduced by the rest of the quantizer. This can be ad-
dressed by any of the ways discussed in Chapter 9.

In a multi-bit modulator, a mismatch in the resistances of the unit elements will de-
grade the in-band SNR, and this has to be addressed by calibration or dynamic element-
matching (DEM) techniques. This is a vast and important topic in itself, and was covered
in detail in Chapter 6.

Another form of nonlinearity can degrade even the performance of a single-bit
switched-resistor DAC. We alluded to this while discussing the usefulness of RZ DACs
in Chapter 9. There, we referred to this phenomenon as transition error, more commonly
known as inter-symbol interference (ISI). This is an instance of dynamic nonlinearity,
caused by the difference between the rise and fall times of the NRZ feedback waveform.
The root cause is the mismatch between the resistance and timing of the pull-up and pull-
down switches in the DAC unit element, as explained with the help of Figure 10.25. The
DAC switches are assumed to have resistances r and r , and a parasitic capacitance c is
present at the junction of the switches. The OTA is assumed to be ideal. We first analyze
the single-ended current i . Ideally, this should be I , where I V (2R), as shown in



FEEDBACK DAC DESIGN 323

1

-1

0 1 2 3 4

Ideal

Actual

V

V

V

V

r C

r C
D

D

R

R

ir

r

c

t T

2

2

(a)

(b)

Figure 10.25 (a) A single-bit switched-resistor DAC, with unequal resistances for the pull-up and
pull-down switches. c represents (undesired) parasitic capacitors. (b) Current waveforms.

Figure 10.25(b). Due to nonzero switch resistance, the waveform has differing rise and fall
time-constants r c and r c , respectively. The error current i (t), which
is the difference between the ideal and actual current is a train of exponentially decaying
pulses, as shown in the figure. It is easily seen that the following sequences take on a value
of 2( 2) at rising(falling) edges and zero elsewhere.

t [n] 0 5( [n] [n 1] [n] [n 1] )
t [n] 0 5( [n] [n 1] [n] [n 1] )

p (t) and p (t), which are the deviations from the ideal DAC waveform at the rising and
falling edges, respectively, are given by p (t) 2 exp( t ) and p (t) 2 exp( t ).
The error current can be expressed as

i (t) I t [n]p (t nT ) t [n]p (t nT ) (10.17)

I

2
[n] [n 1]

linear

(p (t nT ) p (t nT ))

I

2
[n] [n 1]

nonlinear

(p (t nT ) p (t nT ))

From the equations above, it is seen that the single-ended error current waveform has a
nonlinear component dependent on [n] [n 1] and the difference between the rise
and fall transition errors, p and p . The nonlinear charge injected by the DAC in one
clock period, normalized to the ideal charge, is given by

T
(10.18)

In a two-level modulator, transitions rapidly between 1 and 1 when the input is small,
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Figure 10.26 (a) Input to the third-order 2-level modulator and (b) number of transitions in the
preceding 16 samples.

and less frequently when u is large (see Figure 9.23). When u is a sinusoid, the error due
to ISI is large when u crosses zero and small at the peaks. Figures 10.26(a) and (b) show
the input and output transition density, respectively, for a third-order CT M whose input
u is 6 dB below full-scale. The transition density refers to the number of transitions in in
the preceding 16 samples. From this, it is apparent that the error due to ISI should have a
strong second harmonic content. This observation is confirmed by the PSD in Figure 10.27
( 10 3).
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Figure 10.27 Simulated PSD of a third-order single-bit CT M with and without ISI. An NRZ
DAC, with 10 3 is assumed.

The discussion above considered ISI induced distortion in the single-ended DAC cur-
rent, from which it is apparent that ISI can dramatically degrade the performance of a
CT M that employs an NRZ DAC. Fortunately, however, differential operation comes to
the rescue. Referring to Figure 10.25, we see that the two integrating resistors are identi-
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cal. Then, the nonlinear portion of the DAC current is a common-mode component that is
completely rejected due to differential symmetry. In practice, mismatch in the differential
halves, or their timing, would cause some of this to “leak through”.

How does ISI affect the output of a multi-bit DAC? The error current added by each
unit element is still given by (10.17). If the DAC elements were directly driven by the
thermometer output of the ADC, the total nonlinear error due to ISI would be proportional
to [n] [n 1] , and would result in an increased in-band noise floor and harmonic
distortion. However, the use of dynamic element-matching techniques modifies the number
of transitions (as seen in Chapter 6 ), and it can potentially change the spectrum of the error
current.

A final aspect of a resistive NRZ DAC that merits discussion is the reference gen-
erator. It is apparent that noise on the references, when referred to the CT M input,
appears as-is. The reference generator must therefore be designed appropriately. Further,
if we assume identical unit elements and a zero opamp-offset, then the current drawn from
Vref p Vref m will be independent of the modulator output .

10.7.2 Return-to-Zero and Return-to-Open DACs
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Figure 10.28 The differential unit element of a return-to-zero DAC.

The problem of ISI associated with an NRZ DAC is the motivation to use a return-
to-zero DAC. The basic idea is shown in Figure 10.28. t is the lth bit of the thermometer
code. During 1, the resistors are connected to Vref p/Vref m depending on t . During 2,
the resistors are shorted (or connected to Vcm), causing the current to return to zero for the
latter half of the clock cycle. Since an RZ waveform has a rising and falling edge in every
clock cycle (independent of t ), unequal rise/fall times do not result in nonlinearity. To
deliver a charge equal to that in the NRZ case, the resistors need to be reduced by a factor
of two. When compared to an NRZ DAC, therefore, the OTA should be designed to handle
larger currents without causing distortion.

Since the resistors are smaller, the input-referred thermal noise spectral density of the
RZ DAC is twice as high as that of its NRZ counterpart. This makes sense – during 2
(which lasts half the clock period), the RZ DAC simply injects noise without contributing
to the signal component.
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The return-to-open (RTO) DAC aims to remedy this problem by dispensing with the
2 switch of Figure 10.28 altogether. This way, the resistors do not contribute noise in 2.

The average input-referred noise spectral density contributed by the resistors is 8kTMR,
like with an NRZ DAC. Unfortunately, however, the periodic switching of the DAC re-
sistance modulates the loop-gain around the OTA, rendering the integrator a periodically
time-varying system. This degrades the alias-rejection of modulator, and causes OTA noise
from higher frequencies to alias into the signal band.

To summarize, the RZ and RTO DACs are attempts to solve the ISI problem associated
with the NRZ DAC. The price paid for this is the increased demand on the linearity of the
OTA, thermal noise (in the RZ case), or a compromised alias rejection (with the RTO
DAC). Further, as we saw in Chapter 9, a jittery clock adversely affects the performance of
the modulator. The reference buffer needs to supply pulsed currents due to the RZ nature
of the current pulse. This necessitates stronger bypassing in the buffer.

10.7.3 Current-Steering DACs

r C

r C

nd

M1

M2

V

D D

2I

I I

Figure 10.29 Unit element of a current-steering DAC.

An alternative to relying on the virtual ground of the OTA, as we did with a switched-
resistor DAC, is to steer the current generated by a current source. This forms the basis
for the current-steering DAC, whose unit cell is shown in Figure 10.29. M1 and M2 form
a cascoded current source, whose current 2I is steered into or depending on the
sign of D. The I current sources are needed to balance the common-mode component of
the current injected by M1 2.

Why would one want to use a current-steering DAC in the first place? For one, the
DAC does not load the virtual ground node, at least in principle. This has two benefits – the
gain from the OTA noise to the output is now unity (as opposed to 2 with a switched-resistor
DAC). The loop-gain around the first OTA is higher, resulting in improved integrator linear-
ity. Further, a current-steering DAC’s full-scale, and hence that of the ADC, is adjustable
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via the voltage. In applications that demand a high dynamic range, a variable-gain
amplifier (VGA) is often used to broaden the dynamic range of the signal chain, and in
such applications a variable ADC full-scale can eliminate the need for a VGA.

Last, since the bias voltage is connected to a transistor gate, bias noise can be
filtered with a simple RC section. A mega-ohm resistor plus a 100 pF capacitor provides a
noise bandwidth in the kHz range.

r C

r C

nd

M1

M2

D D

V

M3

M4

D D

I

I

Figure 10.30 Unit element of a complementary current-steering DAC.

Referring to Figure 10.29, the net current flowing into the integrating capacitors is
I . Since one of these differential currents I is obtained by subtracting I from 2I , the

unit element injects more noise than is fundamentally necessary. Excess noise in the basic
current-steering DAC is remedied by the complementary unit cell shown in Figure 10.30.
However, the current noise injected by this cell is still larger than that due to a switched-
resistor DAC supplying the same differential current. To see why, notice that the overdrives
of three devices must “fit” within V 2. The most optimistic scenario is to allocate all of
this headroom to M1 M3. Then, the spectral density of the noise current from each source
would be

S ( f ) 4kT
2I

V 2
(10.19)

where in modern processes ranges from 1 2. If the same current was due to a resistor,
the noise current would have been

S ( f ) 4kT
I

V 2
(10.20)

indicating that the current-steering DAC is at least 3 dB worse than a switched-resistor
NRZ DAC. In practice, the spectral density of the noise added by the former is higher,
since the overdrive voltage of M1 M2 can only be a fraction of V 2.
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Other differences between a switched-current and a switched-resistor DAC relate to
the switches. In the latter, the switches are operated in triode mode, whereas in the former,
they are usually operated in saturation. As a result, a current-steering DAC’s switches can
be much smaller than those in a resistive DAC. The downside for the current-steering DAC
is that the gate-drive voltage (Von) of the switches may need to be managed. For example,
in order for the NMOS switches to be in saturation, Von Vcm V . If Von Vdd and
Vcm Vdd 2, this means that we require V Vdd 2. If this condition cannot be guaranteed
over PVT, then circuitry is needed to set Von appropriately.

Last, we note that switch mismatch in a resistive DAC results in both static and dy-
namic (ISI) errors. In current-steering DAC, however, the static error caused by switch
mismatch is attenuated by the high impedance of the current source.

In all other ways, a current-steering DAC and a resistor DAC are similar. Their sensi-
tivity to jitter is identical, as is ISI due to timing asymmetry.

10.7.4 Switched-Capacitor DACs
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Gota

1 Gota
r

Figure 10.31 (a) A first-order CT M with a switched-capacitor feedback DAC and (b) relevant
waveforms.

In Chapter 9, we saw that using a switched-capacitor (SC) feedback DAC [2] offered
one way to address the problem of clock jitter in CT Ms. The idea is illustrated us-
ing the first-order single-bit modulator of Figure 10.31(a). The sampling rate and period
are denoted by f and T , respectively. The integrator is of the OTA-RC type. r is the
zero-canceling resistor, and nominally equals 1 Gota. During 1, the DAC capacitor C

is charged to . During 2, it is discharged into the OTA’s virtual ground. For an ideal
OTA (Gota ), idac is [n] R at the beginning of 2, and it decays exponentially with
a time-constant R C . If this is chosen to be much smaller than T 2, C is discharged
at the end of 2. The charge injected by the feedback DAC in one clock period is given
by C [n]. Since R C T 2, a jittery clock does not modify this charge. Thus, as
explained in detail in Section 9.4, using an SC DAC reduces the sensitivity to clock jitter.

The SC DAC has an exponentially decaying pulse shape. The peak current in a clock
period is given by [n] R , while the average current is [n]C T . The peak-to-average
ratio of the pulse is T R C . The price for achieving good jitter immunity, therefore, is a
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feedback current with large peaks. This in turn necessitates an OTA with sufficiently high
linearity.

Let us review the basic properties of an SC-DAC, assuming that Gota is infinite. How
should C be chosen so as to achieve an STF whose dc gain is unity? The average current
though the integrating capacitor is zero. Since we are assuming an ideal OTA (i.e, 0),
this means that

u

R

Average current due to u

C

T

Average DAC current

0 (10.21)

Thus, C f 1 R to achieve STF(0) 1. This is intuitively satisfying – unity-gain
is achieved when the switched-capacitor “feedback resistor” is made equal to the input
resistor.

How should C be chosen to achieve an NTF equal to (1 z 1)? To determine this,
we need the transfer function L1(z) from to the sampled output at to be z 1 (1 z 1).
This is easily seen to be (C C)z 1 (1 z 1), implying that C should be made equal to
C .

How does the modulator respond when excited by a tone at f ? An input tone at
f can potentially alias to the dc component of . To determine the , we again use the
observation that the average current through C is zero. This means that

cos(2 f t)
R

0

C

T

Average DAC current

0 (10.22)

which yields 0.

To summarize, with an ideal OTA, the modulator of Figure 10.31 has a dc gain of
unity, NTF (1 z 1), inherent anti-aliasing, and reduced sensitivity to clock jitter. What
happens when the transconductance of the OTA is finite?

Figure 10.32(a) shows the integrator with the SC DAC. As far as the DAC is con-
cerned, the integrator can be replaced by its Thevenin equivalent circuit, as shown in Fig-
ure 10.32(b). Assuming RGota 1 (needed anyway to realize a good integrator), the
Thevenin voltage and resistance are u (RGota) and 1 Gota, respectively. The discharge
time-constant of the DAC capacitor is now given by (R 1 Gota)C , which should be
chosen to be much smaller than 0 5T to achieve good jitter immunity.

What is the dc gain of the STF? To determine this, we proceed as follows. We excite
the modulator with a 1 V dc input. Referring to Figure 10.32(a), i (t) 0. Since i (t)

Gota (t), if follows that (t) 0. The average current drawn from the input is thus
given by

i (t)
u (t)

R

1
R

(10.23)

It therefore follows that idac(t) should be 1 R. How is idac(t) related to ? To deter-
mine this, we use Figures 10.32(b) and (c). During 1, C is charged to [n]. In this
phase, idac(t) 0, and the node x is at a potential of 1 (RGota). During 2, C is flipped
around and connected to x through R . As a result, initially dips, but by the end of
this phase, C loses its initial charge, and approaches the potential 1 (RGota), as shown
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Figure 10.32 (a) Input integrator of a CT M with a switched-capacitor feedback DAC. (b) The
input resistor and OTA can be replaced by its Thevenin equivalent. (c) (t) and (t) for a dc input
and (d) (t) and (t) for a sinusoidal input.

in Figure 10.32(c). The charge transferred by the DAC over the complete clock cycle is,
therefore,

Q [n] C [n]
initial charge

C

RGota

final charge

(10.24)

which means that

idac(t) f C
1

RGota
(10.25)

Since idac(t) 1 R and f C 1 R, it follows that

u
STF(0) 1

1
RGota

(10.26)

It is thus seen that the dc gain is approximately one, with the deviation from unity being
proportional to 1 (RGota).

To determine the alias rejection at f , we need to find the response of the modulator
for an input at the sampling frequency. To this end, we excite the modulator with u(t)
cos(2 f t). The average current drawn from the input is

i (t)
cos(2 f t) (t)

R
0 (10.27)

Since i (t) and i (t) are zero, it follows that idac(t) should be zero. To relate idac(t) to ,
we use Figures 10.32(b) and (d). is now a sinusoid with amplitude 1 (RGota). During

1, idac(t) 0. During 2, C , which was charged to [n] during 1, is connected to x

through R . This causes a glitch in the virtual ground node, as shown in Figure 10.32(d).
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Since the discharge time-constant of the DAC capacitor is much smaller than T 2 (needed
for good immunity to clock jitter), the voltage across C tracks by the end of 2 and
attains a potential of 1 (RGota). The charge transferred by the DAC over the complete
clock cycle is, therefore,

Q [n] C [n]
initial charge

C

RGota

final charge

(10.28)

which means that

idac(t) f C
1

RGota
(10.29)

Since idac(t) must be zero, it follows that

STF( j2 f )
1

RGota
(10.30)

We thus see that with a practical OTA, the “inherent anti-aliasing” property of the
CT M is compromised [3]. The intuition is the following. The DAC capacitor samples
the virtual ground of the OTA. Since Gota is finite, the virtual ground node contains a
component at the input frequency, which aliases into the signal band after sampling. Alias
rejection can be improved by increasing the OTA’s transconductance, thereby increasing
RGota. Unfortunately, this is not power efficient – improving the rejection by 20 dB in this
manner would need the power dissipation of the OTA increase by a factor of 10!

Does the use of a multi-stage OTA (which can lead to an increased Gota) help improve
alias rejection? Unfortunately, this is not the case, for the reason described below. When
the CT M is excited by an input at f , the swing at the virtual ground node depends on
the OTA’s transconductance at f . A multi-stage OTA, as we saw earlier in this chapter,
improves only the low-frequency gain of the OTA, making it an ineffective tool to address
the alias-rejection problem.

The “average” arguments presented above enabled us to determine the alias rejection
of the modulator at f . What happens when the input frequency is close to f ? Intuitively,
we should expect it to be approximately 1 (RGota), but a more careful analysis is needed.
The key aspect of a CT M with SC feedback is that the loop-filter becomes a linear
periodically time varying (LPTV) system. It turns out that this degrades alias rejection, as
explored in more detail in Appendix C.

In summary, while the SC feedback DAC is an intuitively appealing idea for com-
bating clock jitter, it presents many practical implementation challenges. For one, the
linearity needed of the first integrator is greatly increased due to the high peak-to-average
ratio of the feedback waveform. Next, the inherent anti-aliasing feature, the hallmark of
continuous-time modulation, is limited to about 20 dB.

10.8 Systematic Design Centering

So far, we have seen how to choose an NTF and the number of quantizer levels to achieve
a desired in-band SQNR. We have also discussed the considerations that go into the choice
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of loop-filter, as well as various approaches to designing an integrator. We understand how
thermal and quantization noise levels must be chosen relative to one another. The next step
in the design process is to design the various building blocks – namely the OTAs (assuming
active-RC integrators), ADC and DAC, and then to put the modulator together. Errors in
the ADC thresholds are either corrected, or modeled as additional noise at its input. Errors
in the DAC levels need special attention, and this topic is addressed in detail in Chapter
6. As far as the NTF is concerned, therefore, the quantizer can simply be modeled by its
delay. The next task is to understand the effect of finite gain and bandwidth of the OTAs
on the loop’s NTF and more important, to mitigate these effects.

Due to finite dc gain and bandwidth, the integrators of the loop-filter are no longer
ideal. Further, loading also modifies their transfer functions. Consequently, the NTF that
is actually realized will be different from that which was originally intended. This raises
the following questions:

Is it possible at all to restore the NTF to the one that we wanted in the first place?

If yes, how does one do this?

DAC

D
A

C

ADC
Continuous-time [n]

Delay

k0

[n](t)

(t)

u(t)

p(t)

t

Direct Path

Loop Filter

Figure 10.33 An example second-order CIFF CT M to illustrate the idea behind coefficient
tuning.

We attempt to answer the questions above using a second-order CIFF CT M as an
example (Figure 10.33). Without loss of generality, we assume that the sampling rate is
1 Hz. The DAC pulse shape and excess loop delay are denoted by p(t) and t , respectively.
The direct path, with gain k0, compensates for t .

How does one determine the coefficients of the continuous-time loop-filter to achieve
the desired NTF? As we have seen in Chapter 8, we need to match the sampled pulse
response of the continuous-time loop with the impulse response of the discrete-time pro-
totype. We denote the latter by l[n] and its z-transform by L(z). To determine the pulse
response of the continuous-time filter, the loop is opened, as shown in Figure 10.34, and
excited by the DAC pulse, which is delayed by t , to account for excess loop delay.
l0(t) l1(t), and l2(t) and their sampled versions can then be found. With ideal integra-
tors, and an NRZ pulse shape,

l0[n] 0 1 0

l1[n] 0 1 t 1

l2[n] 0 0 5(1 t )2 1 5 t
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Figure 10.34 (a) Discrete-time loop-filter. (b) Exciting the continuous-time loop-filter with the
DAC pulse. (c) Matching the impulse response of the continuous-time loop-filter with that of the
discrete-time prototype by adjusting k0 k1 and k2.

Denoting K k0 k1 k2 , where k0 k1, and k2 denote the gains of the direct, first,
and second-order paths respectively, we have

l0[n] l1[n] l2[n] K l[n] n [0 N] (10.31)

The set of (N 1) equations in three unknowns has a unique solution, as we have seen
in Chapter 8, regardless of N . The advantage of this numerical way of finding the co-
efficients, rather than work with the z-transforms of l0 l1 l2, and L(z) is that the former
can be applied to a practical design, where they are readily available from the results of a
transient analysis in a circuit simulator. However, working with their transforms requires
the precise knowledge of the poles of the continuous-time system – which is no easy task,
since the integrators are high-order systems in reality.
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Figure 10.35 Component values of the CT M after dynamic-range scaling, assuming ideal
OTAs.
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After determining coefficients, we perform dynamic-range scaling assuming ideal
OTAs, as discussed in Section 8.8. The resulting normalized second-order CT M that
employs a 9-level quantizer and achieves NTF (1 z 1)2 is shown in Figure10.35.
The next step is to design the OTA. In view of its several advantages, we use a two-stage
feedforward-compensated design, whose macro-model is shown in Figure10.36. The NTF
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1
)(1

2
)

A 4120 6 43 1 0 1875 2 0 0625
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Figure 10.36 Macromodel of the two-stage feedforward-compensated OTA. (Trans)conductances
(in Mho’s) and capacitance (in Farads) are marked.

of the loop with real OTAs can then be determined. As seen in Figure10.37, it is nowhere
close to what we intended. Some of the NTF’s poles have apparently moved close to the
unit circle, causing significant peaking in its magnitude response. This makes sense – given
that the integrators have become slower, one should expect that the NTF has degraded due
to the extra delay added by the loop-filter.
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Figure 10.37 The modulator’s NTF with ideal and real OTAs.

How do we “fix” the loop-filter so as to get back our original NTF? One way is to
design OTAs that are a whole lot faster, but this is not a power efficient solution. Another
approach is to adjust the component values so that the desired NTF is achieved with the
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n 5 15 25
k0 0.8803 0.9670 1.2136
k1 0.7579 0.7000 0.5350
k2 1.8707 1.9308 2.0348

Table 10.1 Modulator coefficients obtained by solving (10.32) for different values of n.

OTAs we currently have. In our second-order example of Figure10.35, we attempt to vary
k0, k1, and k2 so as to make the NTF approach (1 z 1)2 as closely as possible.

A tempting, albeit incorrect, approach to determine K is the following. As before, we
determine the sampled pulse responses of the direct, first- and second-order paths – this
time with the real OTAs. These are obtained from a transient simulation of the schematic
after layout parasitic extraction. K is found by fitting the sampled pulse response of the
continuous-time loop-filter to that of the discrete-time prototype according to

l0[n] l1[n] l2[n]

known from simulation

(schematic or layout)

K l[n] (10.32)

The same as earlier, there are (n 1) equations in 3 unknowns. With ideal integrators,
the solution for K was unique regardless of n. With real OTAs, however, it turns out
that this is no longer true, as Table 10.1 shows. The coefficients vary significantly, and
consequently, so does the resulting NTF, as seen in Figure10.38. What are the “right”
coefficients to use? All in all, this way of finding K does not inspire confidence.
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Figure 10.38 Computed NTFs with K determined using n 5 15 25 in (10.32).

Why does this happen? In reality, the OTA-RC integrator has finite gain, as well as
multiple poles and zeros due to the OTA’s internal parasitics. Thus, the loop-filter in our
second-order example, which should ideally be of second-order, is a high-order system.
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Equation (10.32), which attempts to fit the pulse response of the (high-order) continuous-
time response to that of the second-order discrete-time prototype, can only do an approxi-
mate job. Thus, we should not expect a unique solution for K . More important, it turns out
that the set of equations (10.32) is ill-conditioned. As a result, K varies wildly with N , and
is not appropriate. The problems with this technique are solved by the closed-loop fitting
method [4] discussed next.

10.8.1 Closed-Loop Fitting

The idea behind this technique is to attempt to fit NTF(z)(1 L(z)) to unity, rather than
the open-loop pulse response of the continuous-time filter to l[n], as described earlier. The
NTF of the CT M is related to its equivalent discrete-time loop filter transfer function by

NTF(z)

[ ]

1
1 L(z)

0 0[ ] 1 1[ ] 2 2[ ]

(10.33)

Writing this in the time domain, we have

h[n] (k0l0[n] k1l1[n] k2l2[n]) h[n] [n] (10.34)

where h[n] denotes the impulse response corresponding to the NTF, and * denotes con-
volution. Denoting h0[n] l0[n] h[n] h1[n] l1[n] h[n] h2[n] l2[n] h[n], we
obtain

h[n] k0h0[n] k1h1[n] k2h2[n] [n] (10.35)

Thus,
h0 h1 h2 K [n] h[n] (10.36)

The set of equations (10.36) can be solved to determine K . The coefficients obtained with
different N are shown in Table 10.2.

N 5 15 25
k0 0.9023 0.9003 0.8988
k1 0.7420 0.7423 0.7425
k2 1.9093 1.9010 1.8951

Table 10.2 Modulator coefficients obtained by solving (10.36) for different values of N .

Figure 10.39 shows the magnitudes of the NTF calculated with coefficients obtained
using (10.36) for N 5, 15, and 25. They are almost indistinguishable, and close to what
we desire. This indicates that the proposed technique does a good job of approximating the
desired NTF. The inset in Figure 10.39 compares the in-band behavior of the tuned NTF
with that of the ideal NTF (whose slope must be 40 dB/decade). Below 0 005, the
tuned NTF exhibits first-order behavior, due to integrator finite gain.

Why is it that the open-loop fitting method is virtually unusable, but the closed-loop
technique robust? l0[n], l1[n], and l2[n] are very sensitive to the position of those poles of
L(z) that are close to the unit circle. For instance, if the integrators were ideal, l2[n] n

for large n, while finite gain integrators result in a l2[n] 0 (for large n). Since the least-
squares solution of (10.32) minimizes the norm of [l0 l1 l2]K l, and the error in l2
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Figure 10.39 The magnitudes of the NTF: the ideal NTF and the NTFs with coefficients tuned
as per (10.36) for N 5, 15, 25. The inset compares the in-band behavior of the tuned NTF with
that of the ideal NTF – below 0 005 the tuned NTF exhibits first-order behavior due to finite
integrator gain.

due to finite integrator gain increases greatly with n, the coefficient k2 increases with N

(confirmed by the trend in Table 10.1). To reduce the error for large n (by using a large
k2), k1, and k0 also have to change with n. It is thus seen that the primary reason for the
undesirable behaviour of the coefficients extracted using (10.32) is the sensitivity of l0, l1,
and l2 to the locations of their poles that are close to the unit circle.

Yet, h0, h1, and h2 in (10.36) are less sensitive to changes in l0 l1, and l2 due to the
following. For simplicity, consider an NTF with all its zeros at z 1. If the integrators
were ideal, h [n] l [n] h[n] would be FIR, since the zeros of the NTF would cancel the
poles of L (z). If the locations of those poles of L (z) near the unit circle are perturbed by

z, the pole-zero cancellation is not exact, but the change in h is negligible (even though
the effect on l is dramatic). Figure 10.40 shows l2 and h2 in the second-order example of
Figure 10.34 for two cases: one where the OTA’s dc gain is infinite, and another where it
is 35. Though there is a significant difference in l2, there is virtually no change in h2.

To summarize, finite bandwidth effects of the OTAs in the loop-filter can dramatically
alter the NTF, or even render it unstable. Fortunately, this can be mitigated by tuning
component values so that the sampled pulse response of the loop-filter mimics the impulse
response of the discrete-time prototype, while considering finite OTA bandwidths. The
tuning procedure suggested in (10.36) above is convenient and robust. The l [n] can be
obtained from a short transient simulation of the schematic or layout extracted netlist,
thereby accounting for layout parasitics and nonidealities of the DAC pulse shape. Thanks
to convolution of the l ’s with h, the coefficients obtained are largely independent of the
number of samples used in the least-squares fit of (10.36). Tuning coefficients using this
method, therefore, should result in an NTF that is close to the desired one. It is possible
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Figure 10.40 l2[n] and h2[n] with ideal and real opamps. Though l2[n] changes significantly due
to opamp nonidealities, h2[n] changes very little.

that the act of tuning k0, k1, and k2 modify the l due to changes in the loading of the
integrators. This is a second-order effect, and it can be mitigated, if necessary, by going
through another tuning iteration.

A question that arises from the discussion above is the following. Given that finite
bandwidth effects in the OTAs can be “fixed” by appropriate coefficient tuning, can power
dissipated in the CT M be reduced by deliberately using slow OTAs? While this is a valid
argument, one should be aware that overdoing it has several undesirable consequences. The
design becomes less robust on two counts. First, the NTF is more sensitive to variations
in the OTA bandwidth. It also becomes more sensitive to parasitic capacitances. The latter
makes sense due to the following. An active-RC integrator is insensitive to stray capacitors
only when the OTA is ideal so that the potential of the virtual ground node is zero. With
a finite-bandwidth OTA, this is no longer true – and less so for lower OTA bandwidths.
Another potential problem with using low OTA bandwidths is distortion. As we will see
in Section 10.9, the nonlinear currents injected by the OTAs is proportional to the cubes of
the voltages at their internal nodes. Since reduced OTA bandwidth means higher swings
at the virtual ground (and other internal nodes), the in-band noise due to weak loop-filter
nonlinearities will increase. OTA bandwidths should therefore be chosen as a compromise
between these conflicting requirements: power dissipation, on the one hand, and distortion
on the other. As engineers, we are no strangers to such trade-offs.

10.9 Loop-Filter Nonlinearities in Continuous-Time Delta-Sigma Modulators

Until this point, we have assumed that the loop-filter is perfectly linear. In practice, it is
weakly nonlinear. The resulting CT M model is shown in Figure 10.41, where quanti-
zation noise is assumed to be additive. The natural question that arises is how nonlinearity
degrades the modulator’s performance, and what (if anything) one can do to address it.
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Figure 10.41 Model of a CT M with a weakly nonlinear loop-filter.
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Before we dive deeper, let us understand the ways in which nonlinearity manifests in
the loop-filter. The OTAs are comprised of transconductors, as shown in Figure 10.42. If
we assume fully differential operation and weak nonlinearity, the output current of every
transconductor can be related to its input voltage as follows.

i G( ) 3
3

3 3

imax otherwise

Weak nonlinearity means that the voltage at the input of every transconductor is sufficiently
small, so that the third-order distortion component 3

3 . These assumptions
are a simplification, but they yield useful insights about the modulator performance in
the presence of nonlinearity. The question we wish to answer is: given and 3 for
every transconductor in the loop-filter, what is the in-band SQNR of the CT M ? To
gain intuition without being drowned in notation, we illustrate with CT-MOD1, shown
Figure 10.43(a). The integrator uses a single-stage OTA. It has finite dc gain, with input
and output parasitic capacitances c and c , respectively, as shown in Figure 10.43(b).
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Figure 10.43 (a) CT-MOD1 with a weakly nonlinear integrator and (b) OTA model.

The system of Figure 10.43(a) is a weakly nonlinear one excited by two inputs –
u(t) and e[n]. We need to determine [n]. To do this, we first write the nodal equations
governing the operation of the loop-filter as follows. The voltages at the internal nodes are
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denoted by x1 x2 x3.

˙

c 0 0
0 c1 c1
0 c1 c1 c

ẋ1
ẋ2
ẋ3

(2 ) 0
0

0

x1
x2
x3

3
3

0 0 0
0 0 0

3 0 0

x3
1

x3
2

x3
3

0 0
0 0

F1 F2

u(t)
(t)

(t) [n]p(t nT )

dac ( )

e[n]p(t nT )

( )

In matrix form, the equations describing the modulator can thus be expressed as

Cẋ Gx G3x3 F1 F2 u(t) (t)

(t) dac(t) e(t) (10.37)

where

x is the column vector of node voltages in the loop-filter;

C is the capacitance matrix, G and G3 are the conductance matrices and F1 and F2 are
the input matrices;

x3 denotes the column vector of the cubes of the node voltages;

dac(t) [n]p(t nT ) and e(t) e[n]p(t nT ). In this particular example,
[n] x3[nT ]. In general, it can depend on other node voltages.

The equations (10.37) represent a set of coupled nonlinear differential equations that
represent the operation of the modulator, which is a system excited by u(t) and e(t). The
term that introduces nonlinearity is G3, which in general, renders the equations hard to
solve. However, under the assumption of weak nonlinearity, where the terms in G3x3

are small in magnitude when compared to those in Gx and Cẋ, (10.37) can be solved
in an approximate manner. The intuition behind the solution is the following familiar
observation.

Consider a perfectly linear amplifier with gain k1, excited by an input u. Denote its
output by k1u. If the amplifier is now excited by an input u, the output is k1u.
What happens when the amplifier is weakly nonlinear, with a transfer curve given by
k1u k3u3? When u to such an amplifier is scaled by , the output is given by

ˆ k1u

linear component

3k3u3

third order component

(10.38)

We see that ˆ consists of a “linear” term that scales as , and a component (arising from
the nonlinearity) that scales as 3. For a more general amplifier characteristic with a gently
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saturating odd nonlinearity, the equation above is a good approximation in the sense that
higher order nonlinear components can be neglected as long as u is sufficiently small.

Returning to CT-MOD1, and in the spirit of the discussion above, we assume that
the x(t) (the node voltage vector) can be expressed as the sum of linear and nonlinear
components, according to

x(t) x (1) (t)

linear component

x (3) (t)

third order
nonlinear component

(10.39)

The nonlinear component x (3) (t), which is a consequence of G3, must consist largely of
third-order distortion components, since the OTA exhibits cubic nonlinearity. The key
point behind the solution is to ask what happens to if the inputs to the system (u and e)
were scaled by . If the loop-filter was perfectly linear, x and should also simply scale
by . Due to nonlinearities in the loop-filter, however, the linear part of and x scale by

, while the third-order distortion components will scale by 3. Thus,

x(t) x (1) (t) 3x (3) (t) (10.40)

Using this in (10.37), with scaled inputs u and e, we have

C ẋ (1) 3 ẋ (3) G x (1) 3x (3) G3 x (1) 3x (3) 3

F1 F2 u(t) (1)
dac(t) 3 (3)

dac(t) e(t)

Equating the coefficients of the first and third powers of on both sides of the equation
above, we obtain

Cẋ (1) Gx (1) F1 F2 u(t) (1)
dac(t) e(t) (10.41)

Cẋ (3) Gx (3) G3(x (1) )3 F1 F2 0 (3)
dac(t) (10.42)

The systems of equations above are linear. The first set corresponds to CT-MOD1, where
the OTA is replaced by its linear counterpart, obtained by setting 3 0 as shown in Fig-
ure 10.44(a). Solving this set yields x (1) (t), and thereby (1)

dac and (1)[n]. In other words,
(1)[n] is the output of CT-MOD1 with an input u(t), and its loop-filter’s nonlinearity

turned off.

Equations (10.42) also represent a linear CT-MOD1; however, u and e for this modu-
lator are set to zero. Instead, its internal nodes are excited by the currents that would have
been generated by x (1) (t) acting on the cubic nonlinearities in the loop-filter, as shown in
Figure 10.44(b). x (1) (t) is known, since these voltages correspond to the node voltages
of CT-MOD1 where the OTA is linear. Solution of this modulator yields x (3) (t), and the
output sequence (3)[n]. (3) depends on [x (1)]3. x (1) is a linear function of u and e. Thus,
[x (1)]3 consists of signal distortion, noise floor increase due to mixing of shaped quantiza-
tion noise with itself, and cross-products (e.g., u e2 and u2 e).

The output of the weakly nonlinear system of Figure 10.41 is thus given by

[n] (1)[n] (3)[n] (10.43)

with (1)[n] and (3)[n] being obtained from the systems of Figures 10.44(a) and (b), re-
spectively. While the discussion above illustrated the mechanism by which the in-band
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Figure 10.44 (a) CT-MOD1 with loop-filter nonlinearity turned off. (b) Nonlinear currents are
injected into CT-MOD1, with u 0, and the quantizer bypassed.

performance of CT-MOD1 degrades due to the nonlinear OTA, the same principles apply
to a high-order CT M.

In summary, to determine the effect of weak loop-filter nonlinearities on CT M
performance, we proceed as follows [5].

a. Determine the output sequence of the CT M (1)[n] with all nonlinear effects re-
moved, namely by setting 3 0 for all nonlinear elements.

b. Nonlinear currents 3[x
(1)
1 ]3 is injected into a linear “modulator”, with input u set to

zero, and the quantizer bypassed. The output sequence of this modulator is (3)[n].

c. Compute the PSD of (1)[n] (3)[n] to estimate the in-band SNR of the modulator
– this now accounts for quantization noise as well as weak nonlinearities in the loop-
filter.

From the discussion above, we see that the in-band PSD of (1)[n] must correspond to that
of the ideal modulator, while that of (3)[n] models the degradation due to nonlinear effects
in the loop-filter. Since (3)[n] is obtained by analyzing CT-MOD1 by injecting nonlinear

currents into it, this way of analysis is called the method of current injection.

Figure 10.45(a) shows a third-order CIFF CT M that employs a nine-level quan-
tizer, and samples at 6.144 MHz. The OTAs are two-stage feedforward-compensated de-
signs. The component values are given for a modulator normalized to have a 1-Hz sampling
rate and integrating resistors of 1 . Part (b) of the figure shows the ideal PSD, where the
in-band SNDR is about 125 dB in a 24 kHz bandwidth. With weakly nonlinear OTAs, the
SNDR is degraded to 91 dB. SPICE and the current injection method are in good agree-
ment. A similar agreement is seen in the SNDR plot (Figure 10.46).
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10.9.1 Circuit Techniques to Improve Loop-Filter Linearity

Earlier in this section, we saw how the input signal and quantization noise interact through
nonlinearities in the loop-filter and degrade the SNDR of a CT M. The key to low dis-
tortion operation is to reduce the nonlinear currents injected by the transconductors that
comprise the loop-filter. This can be accomplished in several ways. A “brute-force” ap-
proach is to use (multi-stage) OTAs with large transconductances, which results in smaller
swings on the internal nodes of the OTAs. As a result, the strengths of the nonlinear cur-
rents injected by the transconductors that comprise the OTA are reduced, resulting in a
smaller “noise” due to nonlinearity.

0 DAC

4 ref

Vref

u
Gota

ref

C

R

R

u
Assistant

ref

Figure 10.47 Principle of the assisted opamp integrator.

Another technique, exploiting feedforward, to reduce distortion due to nonlinearity,
is discussed below. For illustration, we use an OTA-RC integrator that forms the input
integrator of a single-bit CT M, as shown in Figure 10.47. For the time being, let us
assume that the circuitry marked “assistant” does not exist. The switched-resistor NRZ
DAC feeds back a rail-to-rail waveform. If the OTA were ideal (Gota ), the virtual
ground potential would be zero, and the current through the integrating capacitor would
be (u ) R, which would in turn be sunk by the OTA. In practice, would need to
swing due to the finite transconductance of the OTA. Finite bandwidth of the OTA would
make matters worse – the rail-to-rail steps in the feedback waveform would necessitate
large swings at OTA’s virtual ground. Such large swings, by the intuition gained from the
“current injection” method, result in significant nonlinear currents that degrade CT M
linearity.

One can avoid the problem of a large virtual ground swing by recognizing the follow-
ing. The current that the OTA needs to sink is known, since the feedback sequence and
the modulator input u are readily accessible. Thus, the current (u ) R can be generated
by the “assistant” circuitry, shown to the right of Figure 10.47. A transconductor 1 R

generates the input component u R. The DAC component R is generated by a current-
steering DAC. Thus, the assistant supplies the current that the OTA would otherwise be
called upon to sink, so no current flows into the OTA [6]. Thanks to this, remains zero,
and speed and distortion problems are avoided. In practice, the OTA would have to only
sink the mismatch between assistant and input currents.

How do noise and distortion of the assistant impact the linearity of the integrator?
These are not problematic, since noise and distortion are injected at the output of the OTA.
When referred to the input u, these errors are reduced by a factor of about RG (which,
in a good integrator, needs to be large anyway).

How does the use of assistance impact the stability of the integrator? It is easy to
see that it does not – if u and are set to zero, the assistant DAC and transconductor are
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removed from the picture, and the integrator reduces to the one without assistance. This
means that the pole locations of the integrator are not affected by the assistant circuitry.
Last, the assistant circuitry dissipates power. When a single-bit DAC is used, the increase
in power consumption due to the assistant is fairly small since the opamp is relieved from
supplying the difference between the instantaneous input and feedback currents, which is
large. However, when multi-bit quantization or FIR DACs are used, the currents generated
in the assistant can be larger than those supplied by the opamp without assistance.

10.10 Case Study of a 16-Bit Audio Continuous-Time Delta-Sigma Modulator

This section describes the design of a CT M attempting to achieve 16-bit resolution in
a 24 kHz bandwidth [7]. The process technology used is a 180-nm CMOS process, sup-
porting a supply voltage of 1.8 V. The first aspect that must be carefully deliberated is the
architecture to adopt. The process technology is decidedly fast for this application – even
for OSR 128, the resulting sampling frequency is only f 6 144 MHz. Many potential
choices of order, sampling rate and number of quantizer levels present themselves. How
does one navigate one’s way through this dizzying maze of possible design choices? Un-
fortunately, there is no easy answer to this question. The discussion that follows is one
valid approach, justified by the results eventually obtained with measurements. Having
said this, it is recommended that one should be able to rigorously and strongly defend
his/her design choices.

High resolution CT Ms have traditionally been realized using multi-level quantiz-
ers. To see why this is so, let us examine the arguments that favor such an approach.

a. Lower Sampling Rate: The sampling rate needed to achieve a desired in-band SQNR
decreases with increasing number of quantizer levels. Further, the NTF can be made
more aggressive, resulting in a further reduction in the sampling rate.

b. Reduced Clock Jitter Sensitivity: The reduced step-size in the feedback waveform (as-
suming an NRZ DAC pulse) results in reduced sensitivity to clock jitter, as discussed
in Section 9.5.

c. Improved Loop Filter Linearity: With a multi-level DAC, the difference between the
input and feedback waveform is small. This means that the peak magnitude of the
signal processed by the loop filter is small, which results in improved linearity for a
given power dissipation.

The arguments above are indeed compelling. However, there are reasons why we do not
favor the use of a multi-bit quantizer. When a flash ADC is used to digitize the loop-filter’s
output, the complexity of the ADC used in the quantizer increases exponentially with the
number of bits. Further, as seen in the discussion accompanying Figure 10.21, random off-
set in the comparators needs to be restricted to a small fraction of the step size. This will
most likely need some form of offset correction, increasing power dissipation and design
complexity. Even though the comparators in the quantizer lend themselves to low-power
operation, clock generation and distribution can consume significant current. This, unfor-
tunately, is difficult to estimate during the architectural design phase. Moreover, mismatch
in the unit elements of the feedback DAC degrade the in-band SNDR of the modulator,
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necessitating mismatch correction, like calibration or dynamic element matching (DEM).
This further increases the power dissipation and design time of the quantizer. In contrast,
using a single-bit quantizer, where the feedback DAC is inherently linear, dramatically
simplifies the quantizer design. Comparator offset is also not problematic. The output of
the loop-filter can be scaled without affecting the output sequence, simplifying the design
of the integrator that drives the comparator. However, the full-scale two-level feedback
waveform places increased demands on the linearity of the loop-filter, and the sensitivity
of the modulator to clock jitter.

From the discussion above, it is seen that a multi-bit loop complicates the quantizer
design at the expense of a simplified loop-filter. The opposite is true in a single-bit modu-
lator. Recognizing this, several recent works have attempted to alleviate the linearity and
clock jitter problems associated with a single-bit design. One approach is to use integra-
tors based on opamp assistance, as discussed earlier in this chapter. An assisted opamp
integrator addresses the linearity issue but does not remedy problems due to clock jitter.

Another possible approach is to use a single-bit ADC and an FIR feedback DAC.
As we saw in Section 9.5, the reduced step-size in such a DAC not only reduces jitter
sensitivity of the modulator, but also relaxes the linearity requirements of the loop-filter.
In practice, the filter and DAC combination are implemented in a semi-digital fashion, as
shown in Figure9.31(b), which makes the FIR DAC inherently linear in spite of mismatch.
Due to the single-bit quantizer, the ADC design is simple and consumes very little power. A
modulator employing a single-bit quantizer and an FIR DAC, therefore, combines the best
features of single-bit and multi-bit operation. FIR feedback adds delay, and will destabilize
the modulator if it is not properly compensated. In the previous chapter, we saw how the
NTF of a loop with FIR feedback can be restored exactly.

Based on the considerations above, we decide to go with a single-bit modulator, with
an FIR feedback DAC. Further, to reduce idle-tone problems, we choose to implement a
third-order loop. A maximally flat NTF with an out-of-band gain of 1.5 and optimally
spread zeros yields a peak SQNR of 110 dB for an OSR of 128. Deeming this adequate,
we proceed to choose the loop-filter topology.

1 3 1
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k1 Fast Path

u

I2 I3 I1

DA
C

2

DA
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Figure 10.48 Single-loop prototype, f 1 Hz

The architecture of the prototype modulator on which the FIR-CT M is based is
the single-loop design shown in Figure 10.48. Weak feedback around I1 and I3, needed
to achieve complex NTF zeros, is not shown. The third-order loop-filter is realized as a
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cascade of integrators with feedforward and feedback (CIFF-B). As discussed in Chapter 8,
this architecture has several advantages. The fast path around the quantizer (through DAC2
and I1) and the high-gain path (through I1, I2, and I3) can be independently optimized,
like in a CIFB design. Due to feedforward, the output of I2 has virtually no signal at the
input frequency. This means that its gain in the signal band (after dynamic range scaling)
will be large. Thanks to this, nonidealities in the rest of the loop-filter will be significantly
attenuated when referred to the modulator input, just like in a CIFF design. The CIFF-B
architecture, therefore, inherits the appealing aspects of both its parents. The gain of the
loop-filter from to is

L1 (s)
k1
s

k2

s2
k3

s3 (10.44)
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F (z)
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Figure 10.49 Normalized CT M prototype incorporating the FIR DAC. F (z) represents the
compensation DAC. All taps are assumed to be identical.

The outermost feedback DAC in the prototype is then replaced by an N-tap FIR DAC,
whose transfer function is denoted by F (z), as shown in Figure 10.49. All taps of the FIR
filter are made identical for ease of layout. Further, the dc gain of F (z) should be 1,
to ensure that the in-band STF of the CT M is unity. A compensation FIR DAC with
transfer function F (z) is added at the input of I1. We wish to stabilize the loop so that
the NTFs of the modulators in Figures 10.48 and 10.49 are identical. As we have seen in
Chapter 9,

a. k̂3 k3,

b. k̂2 k2
3

2 (N 1),

c. F (z) is an N-tap FIR filter.

where all hatted quantities refer to the modulator with the FIR DAC.

Thus, by tuning k2, and adding F (z) at the input of I1, the NTF can be restored
exactly. Once this is recognized, the coefficients of F can be determined analytically, or
by using the numerical techniques of Section 10.8.
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10.10.1 Choice of Number of Taps in the FIR DAC

It is tempting to increase the number of taps in the main FIR DAC without limit, since a
longer FIR DAC results in better filtering of the quantization noise. Due to this, one would
tend to conclude that the magnitude of the error signal e(t) (in Figure 10.49) would reduce
as N increases. As a result, the loop-filter processes a smaller signal, and better linearity
should be expected. This is true for small N– better filtering of the quantization noise does
indeed reduce e(t) . However, beyond a certain point, e(t) no longer decreases due to
the following. As seen earlier, k̂2 increases with N . Further, it also turns out that the dc
gain of F (z) increases with N . Both of these are undesirable. A larger k̂2 increases the
peaking in the signal transfer function, causing the input component of the fed back signal

(t) to be larger in magnitude and shifted in phase with respect to u(t). This means that
even though the quantization noise component of (t) is smaller due to better filtering,
the peak e(t) starts to become larger when N is increased beyond a certain value. The
increased dc gain of F (z) is problematic in a practical implementation, as the input signal
component injected by the compensation DAC necessitates a lower unity-gain frequency
for I3 (after dynamic range scaling). Further, the power dissipation of the clock generation
and distribution circuitry increases with the number of taps.
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Figure 10.50 Peak magnitude of the input to the loop-filter as a function of number of taps in the
FIR filter, for the CIFB and CIFF-B architectures.

The “optimal” number of taps to be used in the FIR DAC, therefore, is dependent
on the loop-filter topology (which influences the STF) and the input signal frequency. In
a CIFF-B design, it is a trade-off between the amount of STF peaking one is willing to
tolerate, the increased power dissipation due to the extra taps (without a corresponding
decrease in e(t) ) and the dc gain of F (z), which has implications for the design of I3.
Simulation results of e(t) (normalized to the value that would be obtained without an FIR
filter), as shown in Figure 10.50 for CIFB and CIFF-B loop-filters, are used as a guide
to decide that 12-tap FIR DACs represent a reasonable choice considering the trade-offs
involved.
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10.10.2 State-Space Modeling and Simulation with an FIR DAC
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Figure 10.51 Treating the loop-filter and FIR DACs as a composite system.

How does one model and simulate a CT M with an FIR DAC using the toolbox?
To see this, we redraw the loop-filter of our modulator as shown in Figure 10.51. Concep-
tually, it consists of a continuous-time part that is driven by the outputs of the main FIR
filter F (z) and the compensating FIR filter F (z), denoted by 1 and 2, respectively. The
state matrices of the continuous-time loop-filter of Figure 10.51 are given by

A

0 k̂2 k̂3
0 0 0
0 1 0

B

0 0 1
1 1 0
0 0 0

C 1 0 0 D 0 0 0

The filter and DACs can be, as usual, discretized. We denote the resulting state vector and
matrices by x and A B C D , respectively.

The FIR filters, both of which have N-taps, introduce (N 1) new states into the
system. The FIR DACs can be represented as a single-input, two-output system as shown
in Figure 10.52. The states of this system are denoted by

xfir x 1 x ( 1) (10.45)

and the corresponding state equations are
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Figure 10.52 State-space representation of the main and compensation FIR DACs.

xfir[n 1]

fir

0 0 0 0
1 0 0 0
0 1 0 0

0 0 1 0

xfir[n]

fir

1
0

0
0

[n] (10.46)

1[n]
2[n]

f1 f2 f 2 f 1
f 1 f 2 f ( 2) f ( 1)

fir

xfir[n] f0
f 0

fir

[n]

The loop-filter and FIR DACs form a larger discrete-time system, whose state-space
representation can be derived from the state matrices of the individual systems as shown
below.

The discrete-time equivalent of the loop-filter is written as

x[n 1] A x[n] B 1u B 23
1
2

(10.47)

[n] C x[n]

where B 1 represents the first column of B and B 23 is a matrix that is comprised of
the second and third columns of B . Using (10.46) in (10.47), the state equations of the
composite structure in Figure 10.51 can be expressed as

x[n 1]
xfir[n 1]

A B 23Cfir
0 Afir

x[n]
xfir[n]

B 1 B 23Dfir
0 Bfir

u

[n] C 0 x[n]
xfir[n] (10.48)

The zero entries in the matrices above are submatrices of appropriate order. With the state-
space representation of the loop-filter in hand, the power of the simulateDSM routine in
the toolbox can now be harnessed.
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Figure 10.53 NTF magnitudes as a function of 25% time-constant variation for (a) a conventional
CT M and (b) a CT M with a 12-tap FIR feedback DAC. (c) The maximum stable amplitude as
a function of time-constant variation.

10.10.3 Effect of Time-Constant Variations

A concern regarding a CT M-based FIR DAC is the effect of time-constant variations on
the NTF, and the maximum stable amplitude (MSA). To examine this, simulations were run
on CT Ms with and without an FIR DAC. Under nominal conditions, both modulators
were designed to have the same maximally flat NTF with an out-of-band gain of 1.5. All
time-constants were then changed over a 25% range from their nominal values. The re-
sulting NTFs and MSAs for the conventional and FIR-CTDSM are shown in Figure10.53.
It is seen that the high-frequency gains are similar in both cases. Since the high frequency
gain of the NTF largely influences the MSA, it makes sense that both designs have similar
MSAs as time-constants are varied. From this, we conclude that a CT M with an FIR
DAC is not any more sensitive to time-constant variations than its NRZ counterpart.

10.10.4 Modulator Architecture

The NTF of the CT M is chosen to be maximally flat, with an out-of-band gain of 1.5,
as per Lee’s rule. The full-scale is 3.6 V (peak-to-peak differential), corresponding to an
external reference voltage of 1.8 V. Simulations show that the maximum stable amplitude
is about 3 dBFS.

A simplified single-ended schematic of the third-order CT M is shown in Fig-
ure 10.54. As discussed earlier, a CIFF-B loop-filter is used. Negative resistors indicate
inversion in the differential version. Active-RC integrators are used for low noise and high
linearity. FIR DACs inject currents proportional to the reference into the virtual grounds
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Figure 10.54 Simplified single-ended schematic of the modulator.

of the opamps. Resistive DACs are used for low-noise operation. All tap weights of the
main FIR DAC (FIR1) are equal. As a result, the unit resistors are 12R1. The input-referred
thermal noise (of the differential loop-filter) due to R1 and FIR1 is about 7 V (rms). The
impedance levels of the second and third integrators can be significantly increased without
affecting the in-band noise. As seen from Figure 10.54, R2 and R3 are about 32 and 16
times larger than R1. Thanks to this, A2 and A3 can also be impedance scaled, reducing
power dissipation.

R feeds the input into the third integrator formed by A3-R3-C3. Without R , the
output of A2 would consist of a component proportional to . Using R to cancel the
low frequency output of FIR (which is largely proportional to ) avoids this problem,
enabling the use of a much smaller C2. Weak feedback around A2 and A3 by adding a large
resistor (not shown in Figure 10.54 for clarity) from the ouput of the latter to the inverting
terminal of the former moves two zeros of the NTF from dc to an optimal location in-band.
To avoid the use of a large resistor, a T-network is employed by reusing the CMFB sense
resistors of A3.

Thanks to single-bit operation, the loop-filter’s output can be scaled without affecting
the output sequence. This is advantageous in practice, since the opamp (A3) need not be
designed to handle large swings at its output.

All resistors and capacitors are realized as switchable banks, to counter RC time-
constant variations. The opamps are two-stage feedforward-compensated structures.
Thanks to the low frequency of operation (in relation to the speed of the process), excess
loop delay is negligible. Since the FIR DACs are realized in semi-digital fashion, they are
inherently linear: resistor mismatch only alters the transfer function of the FIR filter, which
is virtually inconsequential to modulator performance. Details of the individual blocks are
given below.

10.10.5 Opamp Design

The noise and linearity of the first opamp in the loop-filter are critical. The simplified block
diagram and schematic of A1 are shown in Figures 10.55(a) and (b), respectively. A two-
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compensated OTA used in the first integrator.
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stage feedforward-compensated architecture is chosen to achieve high dc gain and unity-
gain bandwidth. The first stage, whose signal path is formed by transistors M1 M1 ,
reuses the input stage current, resulting in low noise for a given power dissipation. The
large sizes of the input devices are dictated by considerations of 1 f noise. The second
gain stage G 2, is formed by M2 . M3 form G 3.

Thanks to the 12-tap FIR DAC, the linearity requirements of the opamp are greatly
relaxed, thereby enabling the use of a relatively small bias current in the opamp’s second
stage. The current in the second stage is reused to realize G 2 and G 3. The common-
mode voltage at the output of each stage is stabilized by separate loops. C1 and C2 are
needed to compensate these common-mode feedback (CMFB) loops.

R

R
C

C
c

c

(a)

c

c

(c)

c s

k 1

c

c

(b)

C

C

Figure 10.56 (a) OTA-RC integrator, with the OTA’s input parasitic capacitance c . (b)
Determining the loop-gain at frequencies much higher than the unity-gain frequency of the integrator.
(c) Setup to simulate the OTA’s gain.

A question that arises during the OTA design phase is – “What feedback factor should
one use to analyze OTA stability?” In our modulator, the OTA forms part of the integrator,
as shown in Figure 10.56(a). The parasitic input capacitance of the OTA, which is not
negligible, is denoted by c . As we have seen earlier in this chapter, the unity-gain fre-
quency of the integrator ( 1 RC) has to be much smaller than the unity-gain bandwidth
of the OTA. Therefore, as far as the feedback loop enclosing the OTA is concerned, the
integrating capacitors C can be treated as short-circuits at frequencies around the OTA’s
unity-gain bandwidth, as shown in Figure 10.56(b). By a similar argument, the influence
of the resistors on the loop-gain at high frequencies can be neglected. It is thus seen that
the OTA should be stable in a unity-feedback configuration.

The input parasitic capacitance c loads the second stage of the OTA. To determine
loop-gain, the loop has to be conceptually broken to the right of c , as shown in Fig-
ure 10.56(b). To simulate the loop-gain, therefore, it is appropriate to use the setup shown
in part (c) of the figure. In the design of Figure 10.55, c 0 5 pF.

The simulated magnitude and phase responses of the OTA are shown in Figure 10.57.
The dc gain is about 70 dB, and the unity-gain bandwidth is seen to be about 89 MHz. The
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Figure 10.57 Magnitude and phase plots of the first OTA.

phase margin is about 60 degrees. Thus, an integrator realized using the OTA will have a
high-frequency parasitic pole at about 89 MHz. This is approximately equivalent to a delay
of about 1 (2 89 MHz) 1 8 ns.
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Figure 10.58 Step response of the first integrator. The response obtained with an ideal OTA is also
shown for comparison.

The OTA is embedded into the integrator. The response to a unit-step is shown in
Figure 10.58. The response with an ideal OTA is also shown for comparison. The under-
shoot when a real OTA is used is due to the right-half-plane zero in the integrator transfer
function caused by the feedforward effect of the integrating capacitor C. The delay with
respect to the output of an ideal integrator is about 2 ns, consistent with the OTA’s 89 MHz
unity-gain bandwidth.
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10.10.6 ADC and FIR DACs

A sense-amplifier-based comparator was used to make the single-bit decision on the loop-
filter output. The circuit is similar to that shown in Figure 10.18, except that the reference
storage capacitors (C ) and the corresponding switches are not needed (due to 1-bit oper-
ation). C2MOS flip-flops were used to realize the digital portion of the FIR DACs. The
main and compensating FIR DACs share the same flip-flops.

12x 2x4x8x

C1

V

D

nda

D
d1 3

12R1
c

D

d1 3

V

One tap of the FIR DAC

Figure 10.59 Using a digitally programmable PMOS device enables programming to reduce
distortion due to rise-fall asymmetry.

The FIR DACs are resistive and are implemented in a semi-digital fashion. Rise-fall
asymmetry can cause even-order distortion due to inter-symbol-interference (ISI), as in a
conventional NRZ DAC. Straightforward analysis shows that the use of FIR filtering does

not mitigate this problem. Figure 10.59 shows a single-ended section of one tap of the
main FIR DAC. D is the single-bit decision of the quantizer. As we discussed in Section
10.7.1, ISI is primarily due to mismatch between the resistances of the pull-up and pull-
down transistors, and causes even-order distortion in the current injected by the DAC unit
element. Fortunately, this distortion is canceled due to differential operation. In practice,
mismatches will cause a small fraction of ISI-induced distortion to leak into the differential
output. In view of the extremely low levels of distortion desired in this work, and the lack
of reliable information on resistor matching, the modulator was designed so that the single
ended feedback current waveforms have inherently low distortion. This is accomplished by
ensuring roughly equal on-resistances for the pull-up and pull-down devices under nominal
conditions. To account for process variations, the PMOS switches are realized as a 3-bit
bank, as shown in Figure 10.59.
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Figure 10.60 Block diagram of the decimation filter.

10.10.7 Decimation Filter

The block diagram of the decimation filter is shown in Figure 10.60. The output of the
decimation filter is twenty-bits wide, and is at the Nyquist rate (48 kHz). The first stage
is a fourth-order 32-tap CIC filter, implemented as a Hogenauer structure (see Chapter
14.) This is followed by two halfband FIR lowpass filters, each of whose outputs are
downsampled by a factor of 2. The filter orders are 16 and 60, respectively. The twenty-bit
decimation-filter output is transferred off-chip through a serial peripheral interface (SPI).
The decimator consumes 100 W from the 1.8 V supply.

10.11 Measurement Results
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Figure 10.61 Measured PSD of the modulator output for the input amplitude that results in peak
SNDR.

The CT M, decimator and an SPI interface (to facilitate data transfer to/from the
chip) were fabricated in a 0.18 m CMOS process. The active area of the chip, including
the decimator, is 1.25 mm 1 mm.

Figure 10.61 shows the PSD of the modulator at the amplitude that results in the peak
SNDR. The peak SNR, SNDR, and dynamic range (DR) are 98.9 dB, 98.2 dB, and 103 dB,
respectively. In audio applications, an oft-quoted performance metric is the A-weighted
SNR. The design achieves a peak A-weighted SNR and SNDR of 102.3 dB and 101.5 dB,
respectively. The third harmonic distortion is seen to be about 106 dB. The PSD com-
puted at the output of the decimation filter gives virtually the same performance, indicating
that the decimator is working as intended.



SUMMARY 359

-120 -100 -80 -60 -40 -20 0

0

20

40

60

80

100

Input (dBFS)

S
N

D
R

(d
B

)

Figure 10.62 SNDR as a function of input amplitude.

Figure 10.62 shows the plot of SNDR as a function of input amplitude. The modulator
dissipates 280 W from a 1.8 V supply, which translates to a Schreier FoM of 182.3 dB.
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Figure 10.63 PSD with and without ISI correction.

Figure 10.63 shows the measured spectra of a 4 dBFS input with and without ISI
correction. The reduction in HD2 with correction is apparent. The inherently low HD2
(even without correction) indicates good resistor matching in this process.

10.12 Summary

In this chapter, we discussed circuit design considerations for CT Ms. We began by con-
sidering various options for realizing the integrators in the loop-filter. We concluded that an
OTA-based active-RC structure is an excellent choice to realize the input integrator. Gm-C
integrators, which are faster but less linear, are (only) suitable as inner integrators. We stud-
ied several choices for realizing the OTA. We found that with feedforward-compensated
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multi-stage structures, it is possible to realize of high bandwidths in a power-efficient man-
ner.

We then examined thermal noise in CT Ms and concluded that if the loop-filter is

time-invariant, the input-referred in-band (thermal) noise spectral density of the modulator
is virtually the same as the in-band noise spectral density of the loop-filter. We saw that
this was due to the “inherent anti-aliasing” property of a CT M (with a time-invariant
loop-filter).

The in-band noise of a CT M consists of two independent components – the shaped
quantization error and thermal noise. How one should partition a given total noise budget
into these two components was discussed next. Since reducing quantization noise “costs”
much less power than reducing thermal noise, we concluded the latter should account for
most of the noise budget in a power efficient CT M design. A rule of thumb is to keep
(in-band) quantization noise at least 10-12 dB below the (in-band) thermal noise.

We then looked into choices for the design of comparators. We saw that comparator
offset can be problematic, especially when the SQNR-SNR margin is small. This often
necessitates additional circuitry for comparator offset correction.

The next topic of discussion was the design of feedback DACs. We examined the mer-
its of various DAC pulse shapes, and several methods of implementing them. In particular,
we studied trade-offs associated with resistive and current-steering DACs. We discussed
properties of CT Ms with switched-capacitor feedback and found that such DACs not
only degrade the modulator’s linearity due to the high peak-to-average ratio of the feed-
back waveform but also severely degrade its alias-rejection.

Once the modulator is put together with “real” blocks, the NTF that is realized is
bound to be different from the one that was originally intended. Fortunately, this can be
remedied by tuning coefficients. We described a robust numerical technique to accomplish
this.

We then gained an understanding of the effects of weak loop-filter nonlinearities on
CT M performance, and discussed ways of addressing them. Finally, we described the
design of a third-order, single-bit audio CT M designed to achieve 16-bit performance
in a 24 kHz bandwidth. The modulator, which uses a 12-tap FIR feedback DAC, achieves
a peak SNDR of 98.2 dB. Implemented in a 180 nm CMOS process, it consumes 280 W
from a 1.8 V supply, yielding FoM 182 3 dB.
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CHAPTER 11

BANDPASS AND QUADRATURE
DELTA-SIGMA MODULATION

Previous chapters described converters in which the highest frequency of interest was
a small fraction of the sample rate. This chapter shows how converters can also be
used to digitize narrowband signals containing frequencies that are an appreciable fraction
of the sampling rate. The resulting bandpass and quadrature bandpass converters preserve
many of the advantages of ordinary lowpass converters and are particularly attractive
in wireless receiver systems.

11.1 The Need for Bandpass Conversion

Figure 11.1 shows five digital receiver architectures. In the superheterodyne architecture,
the incoming radio-frequency (RF) signal is repeatedly filtered, amplified, and downcon-
verted before being digitized and sent to a digital signal processor (DSP). This architecture
is able to achieve a high degree of selectivity without using high-Q filters since filtering
is applied repeatedly at progressively lower frequencies. Also, because unwanted signals,
which in a wireless receiver can be much larger than the wanted signal, are removed prior
to digitization, and since the wanted signal is at low frequency, the ADC requirements are
modest. The price paid for these advantages is complexity: such receivers typically have
several stages of analog filtering and mixing before analog-to-digital conversion.

The direct-conversion system architecture depicted in Figure 11.1(b) is considerably
simpler since there is only one downconversion operation, although that downconversion
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Figure 11.1 Receiver architectures.
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does require a quadrature mixer. One disadvantage of this approach is that the receiver’s
ability to distinguish signals located above the local oscillator (LO) frequency from those
below the LO frequency is limited by imperfect quadrature in the mixer and imbalance
in the subsequent baseband circuits. Another disadvantage is that the receiver is vulner-
able to dc offset, 1 f noise and even-order distortion products since the desired signal is
at baseband. With adaptive digital signal processing it is possible to remove the dc offset
while losing only a few kHz of bandwidth, and to correct I/Q mismatch with sufficient
accuracy to achieve 70–80 dB of steady-state image rejection. However, the signal pro-
cessing associated with wideband I/Q mismatch correction is complex and the 1 f noise
and even-order distortion problems remain.

Using a bandpass ADC (Figure 11.1(c)) or quadrature bandpass ADC (Figure 11.1(d))
to digitize the first IF (intermediate frequency) reduces the complexity of a superhetero-
dyne architecture to that of a direct conversion receiver without incurring the power and
complexity penalties of adaptive digital processing. Furthermore, since the signal is at an
IF, 1 f noise and dc offset are unimportant, and even-order distortion is less problematic.

Lastly, Figure 11.1e depicts the ultimate in architectural simplicity. This architec-
ture dispenses with analog downconversion entirely and digitizes the RF signal using an
RF bandpass ADC. In addition to its raw simplicity, this architecture also allows fast
frequency-hopping because reprogramming a bandpass ADC is typically faster than chang-
ing the LO frequency. The primary barrier to using a bandpass ADC as a receiver is the
converter’s center-frequency range. Bandpass ADCs with center frequencies in the low
GHz range have been reported in the technical literature [1]-[4], but since the current com-
mercial limit is 450 MHz [5], bandpass conversion is currently more suited to IF rather
than RF digitization. Nonetheless, the progress made over the last decade suggests that
commercial parts capable of digitizing GHz RF signals will be available soon.

n BP ADCs

DSP

BW

n BW

frequency

Figure 11.2 Frequency-interleaving.

As a final motivation for bandpass conversion, consider the frequency-interleaved

system depicted in Figure 11.2. Just as time-interleaved ADCs achieve wideband operation
by staggering the sampling times of multiple low-speed ADCs, a frequency-interleaved
ADC staggers the center frequencies of multiple bandpass ADCs to digitize a wide swath
of frequencies. Both forms of interleaving are sensitive to mismatch, but the resulting
impairments are qualitatively different. In a time-interleaved ADC mismatch causes spurs
and noise, whereas in a frequency-interleaved ADC, mismatch is either benign (if the bands
are not stitched together), or merely results in a non-flat frequency response. For a receiver,
linearity and spurious-free dynamic range are of paramount importance whereas transfer-
function flatness is secondary and thus frequency-interleaving offers a promising way to
construct ADCs for wideband receivers.
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11.2 System Overview
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Figure 11.3 A bandpass ADC system.

Figure 11.3 depicts a bandpass ADC system as well as the spectra of its key
signals. As this figure indicates, the input to the ADC is either an IF or RF signal and
the output of the ADC contains the desired signal surrounded on either side by shaped
quantization noise. The digital output of the bandpass modulator is mixed to dc by a
digital quadrature mixer, and then lowpass-filtered and decimated by a quadrature lowpass
digital decimation filter to produce complex baseband digital data.

The oversampling ratio of a bandpass ADC is defined in the same way as it is for a
standard (lowpass) ADC, namely

OSR
f

2 f
(11.1)

where f is the sampling frequency and f is the width of the band of interest. Note that
the center frequency f0 does not appear in (11.1), and thus the oversampling ratio can be
large even if the ratio f f0 is not.

As indicated in Figure 11.3, the output data rate needed to support a bandwidth f is
also f , since the output signal is complex. Thus, in a bandpass ADC system, the sample
rate can therefore be reduced by a factor as large as 2 OSR, rather than the OSR factor that
applies in the lowpass case.

Just as a bandpass modulator can exploit the narrowband character of its input, a
quadrature modulator can exploit the additional information available in a quadrature
signal. Figure 11.4 illustrates the main signal-processing operations that occur inside a
quadrature ADC system. A quadrature signal, such as that produced by a quadrature
mixer, is applied to a quadrature modulator which in turn produces a digital quadrature
output containing the desired signal plus shaped quantization noise. The distinguishing
feature of a quadrature modulator is that its quantization-noise stopband need only exist

A quadrature signal consists of two real signals, commonly denoted either by (for in-phase) and (for
quadrature phase), or by (for real) and (for imaginary). In contrast to a real signal, the spectrum of a
quadrature signal need not be symmetric about zero frequency, that is, positive and negative frequencies are
distinct. Section 11.6 discusses quadrature signals and quadrature filters in more detail.
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Figure 11.4 A quadrature ADC system.

at positive (or negative) frequencies. In a sense, a quadrature converter is more efficient
than a bandpass converter because no power is wasted digitizing the negative-frequency
content of the input. As in a bandpass ADC system, a quadrature modulator’s output
is mixed to baseband by a digital quadrature mixer and filtered by a quadrature decimation
filter to produce Nyquist-rate baseband data.

The Nyquist band for a quadrature system is [ f 2 f 2], and thus the total infor-
mation bandwidth is f . In order for OSR 1 to correspond to no oversampling, the
oversampling ratio of a quadrature system is defined as

OSR
f

f
(11.2)

In other words, for a given signal bandwidth and sampling rate, the OSR of a quadrature
modulator is twice that of a real modulator. Since doubling the OSR can improve the
SQNR of a modulator dramatically, quadrature bandpass modulators have a signif-
icant SQNR advantage over their real counterparts. Lastly, note that since the minimum
output data rate is f , decimation by a factor of OSR is appropriate for a quadrature system.

Having completed our overview of bandpass and quadrature bandpass ADC sys-
tems, we now delve into a discussion of the modulators themselves. The essence of the
design steps are the same as with lowpass modulators, namely select the NTF and num-
ber of quantizer levels, choose the topology, realize the NTF with the chosen topology, do
dynamic-range scaling, and finally convert each block to a transistor circuit. The upcoming
sections describe what is different, first for bandpass modulators and then for quadrature
modulators. Circuit details and measurement results from a recent high-speed continuous-
time bandpass ADC serve as a buffer between the two high-level discussions.

11.3 Bandpass NTFs

Figure 11.5(a) depicts a representative bandpass NTF. Note that in order to have n zeros in
the passband there need to be n zeros at negative frequency, and thus a 2nth-order bandpass
modulator is analogous to a lowpass modulator of order n. Lee’s rule for stability is as
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Figure 11.5 (a) Pole-zero and (b) NTF/STF magnitude plots for an f 6 bandpass modulator.

effective in the context of binary bandpass modulation as it is in the context of binary
lowpass modulation. Zero optimization is likewise as useful for bandpass NTFs as it is for
lowpass NTFs.

By supplying a nonzero value for the optional f0 argument to the toolbox function
synthesizeNTF, a bandpass NTF can be created that yields a maximally flat all-pole STF
when a single feed-in is used for the input signal. The simulateDSM function can then
simulate the behaviour of the modulator given the input and number of quantizer levels.
The code fragment below illustrates these operations.

% Create bandpass NTF
osr = 32;
f0 = 1/6;
ntf = synthesizeNTF(6,osr,1,[],f0);
% Realize it with the CRFB topology
form = ’CRFB’;
[a,g,b,c] = realizeNTF(ntf,form);
% Use a single feed-in
b(1) = abs( b(1) + b(2)/c(1)*(1-exp(-2i*pi*f0)) );
b(2:end) = 0;
ABCD = stuffABCD(a,g,b,c,form);
% Simulate the modulator
M = 16;
N = 2^15;
ftest = round((f0+0.25/osr)*N)/N;
u = undbv(-1)*M*sin(2*pi*ftest*(0:N-1));
v = simulateDSM(u,ABCD,M);

Figure 11.6 plots a portion of the output data along with the input signal and Fig-
ure 11.7 shows the associated spectrum. As with lowpass modulation, the correspondence
between the input and the output in the time domain is coarse at best, but in the frequency
domain it becomes apparent that the conversion is highly accurate, to 1 part in 105 for this
example. See Appendix B for more information on how to apply other toolbox functions
to bandpass systems.

11.3.1 N-Path Transformation

Figure 11.8(a) shows a pair of identical linear time-invariant systems H (z) operating in
a time-interleaved fashion. As may be verified by constructing the output in response to
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Figure 11.6 Example input and output data for a bandpass modulator.
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Figure 11.7 Bandpass modulator output spectrum.
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Figure 11.8 Two-path systems.
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impulse inputs at arbitrary times, the composite system is time-invariant and has a transfer
function H (z) H (z2). Interleaving N copies of the original system realizes a transfer
function H (z) H (z ), and hence a transformation of the form z z is called an
N-path transformation.

In a similar vein, Figure 11.8(b) depicts an arrangement wherein the inputs and out-
puts of the paths have alternating polarity. Despite the time-varying nature of the com-
mutating switches and polarity reversals, the composite system is again time-invariant and
has a transfer function H (z) H ( z2). Interleaving N copies of the original system
with alternating polarity on each of the path inputs and outputs realizes a transfer function
H (z) H ( z ), and a transformation of the form z z is also considered to be an
N-path transformation.

Lowpass Prototype NTF Bandpass NTF
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Figure 11.9 Applying a two-path transformation (z z2) to a lowpass NTF.

The substitution z z2 transforms a lowpass NTF (with n zeros near z 1)
into a bandpass NTF with n zeros near z j and n zeros near z j. This (2n)th-
order NTF has the same gain versus frequency profile as the original NTF, except that the
frequency axis is compressed by a factor of two and the response replicated as illustrated
in Figure 11.9. Since this NTF is obtained via a two-path transformation, the resulting
bandpass modulator is exactly equivalent to two copies of the original lowpass modulator
operating on subsampled data with alternating polarities, as depicted in Figure 11.10.

This equivalence shows that a (2n)th-order bandpass modulator derived from an nth-
order lowpass modulator via the z z2 transformation has exactly the same stability
properties and SNR curve as the lowpass modulator operated at the same OSR. Further-
more, the limit-cycle characteristics of a bandpass modulator with an f 4 sine wave input
correspond to the interleaved limit-cycle characteristics of two lowpass modulators with dc
inputs of A cos and A sin , where A is the amplitude of the sine wave and is its phase
relative to the sampling clock.

The z z2 transformation can be applied to the NTF of a lowpass modulator to
yield a bandpass NTF that can then be realized with any of the structures shown in Chapter
4. An alternative method is to apply the z z2 transformation directly to a lowpass
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Figure 11.10 System-level z z2 transformation.
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Figure 11.11 z z2 transformation applied directly to MOD1.

modulator at the block-diagram level, simply by replacing each delay element with two
delay elements and an inversion. As an illustration, Figure 11.11 shows the f 4 bandpass
analog of MOD1. The “integrator” now contains a pair of delays and an inversion in
its feedback path, while the feedback path from the quantizer also contains two delays but
loses the inversion that is normally present at the first summation. This structure is actually
simpler than what would result from mapping the NTF onto any of the general-purpose
structures presented in Chapter 4.

time

MTF(z) 1 z 1(a)

time

MTF(z) 1 z 2(b)

Figure 11.12 N-path mismatch-shaping usage patterns.

As a closing observation regarding the N-path transformation, note that this trans-
formation can be applied to mismatch-shaping logic as well as to a noise-shaping loop.
For example, transforming the rotation scheme of Section 6.2 via z z to implement
a mismatch transfer function MTF 1 z 1 yields the element usage pattern depicted
in Figure 11.12(a). In this system, the block of 1s associated with each sample starts with
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the last element selected and proceeds backwards into the most-recently-selected elements.
This element usage pattern can be created by alternately flipping the thermometer-coded
output of the flash ADC, from top to bottom, while also alternately adding or subtract-
ing the binary code from the shift control signal. To implement MTF 1 z 2, two
copies of this algorithm need to be interleaved, yielding the element usage pattern shown
in Figure 11.12(b).

11.4 Architectures for Bandpass Delta-Sigma Modulators

11.4.1 Topology Choices

Bandpass modulators possess the same architectural variety as lowpass modulators, and
the trade-offs between the different structures are also essentially the same. For example,
bandpass modulators can be implemented in single-loop or cascade form, with a similar
trade-off between improved stability and increased sensitivity to analog nonidealities such
as coefficient errors and finite opamp gain. Likewise, the loop-filter of a bandpass modu-
lator can be constructed using any of the conventional forms found in lowpass modulators,
including feedback, feedforward, and hybrid topologies, with similar trade-offs between
internal dynamic range and STF quality.

a1 a2 a3

u

(a)

u

(b)

a1

a2

a3

Figure 11.13 Basic loop topologies for lowpass modulators: (a) feedback (b) feedforward.

Figure 11.13 contrasts the feedback and feedforward topology extremes for lowpass
modulators. In the feedback topology, the quantizer output signal is fed back to the in-
put of every integrator in the loop filter, whereas in the feedforward topology, the output
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signal of every integrator is fed forward to the input of the quantizer. The integrators
may be any combination of continuous-time integrators (e.g., Gm-C or active-RC integra-
tors) or discrete-time integrators (including delaying, nondelaying or half-cycle-delaying
switched-capacitor integrators), provided the coefficients and timing are chosen appro-
priately. To shift the loop-filter poles to nonzero frequencies, it suffices to add internal
feedback paths such as the one shown with dashed lines in Figure 11.13(a). These loop-
filter topologies are readily used in the construction of bandpass modulators. For example,
Figure 11.14 shows the structure of the loop-filter of a fourth-order bandpass modulator

a1 a2 a3

u

1

a4

2

Figure 11.14 Loop filter of a fourth-order bandpass modulator employing the standard feedback
topology.

employing the feedback topology.

When f0 is a substantial fraction of the sampling rate, the resonator output may be
taken from the first integrator as shown in Figure 11.15. The integrators in this figure are

0
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Figure 11.15 Loop filter of a fourth-order bandpass modulator employing a feedback topology
with bandpass resonators.

shown as continuous-time blocks for convenience. Taking the resonator output from the
first rather than the second integrator output changes the transfer function of the resonator
from 2

0 (s2 2
0), which is a lowpass response, to s 0 (s2 2

0), which is a bandpass one.
Since the bandpass response has a null at dc, it is clear that a lowpass modulator cannot
make use of these bandpass resonators, whereas a bandpass modulator can. Since the n 2
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resonators in an nth-order bandpass modulator may either be of the lowpass or bandpass
variety, there are 2 2 possible lowpass/bandpass resonator combinations for each of the
loop-filter topologies (feedback, feedforward, or hybrid).
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Figure 11.16 Eliminating a feedback DAC by adding a feedforward path.

Figure 11.16 illustrates how adding a feedforward path, and thus connecting the out-
put of one resonator to both of the integrators in the next resonator, can eliminate one of
the feedback coefficients (i.e., one of the feedback DACs) in a bandpass modulator. Since
the transfer function from V to Y is the same in Figure 11.16 as that of Figure 11.15, the
noise transfer function of a modulator employing the loop-filter of Figure 11.16 will be the
same as that of a modulator employing the loop filter of Figure 11.15. (The signal transfer
functions will not be the same, however.) This transformation may be applied to each res-
onator section except the last one, thereby cutting the required number of DACs by nearly
50%. As will be seen in Section 11.5, this transformation is helpful in the construction of
a bandpass modulator that employs one or more LC tanks.
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Figure 11.17 Internal structure of a more general loop-filter for a bandpass modulator.

Figure 11.17 shows a portion of a loop-filter which encompasses all of the variants.
Each resonator section is coupled to the next through four arbitrary gain blocks, so the
choice of a lowpass versus a bandpass section is simply a special case wherein all coef-
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ficients are zero except for one. The feedback DACs are not shown, and these could be
added to any or all of the integrator summing junctions, according to whether a feedback,
feedforward, or hybrid modulator topology is used.

11.4.2 Resonator Implementations

The primary difference between the realizations of a lowpass modulator and a bandpass
modulator is that a lowpass modulator requires good integrators, whereas a bandpass mod-
ulator needs good resonators. The degradation caused by a finite quality factor (Q) in the
resonators of a bandpass modulator is analogous to the degradation caused by finite dc gain
in the integrators of a lowpass modulator: both reduce SQNR and increase susceptibility to
tonal behavior. The SQNR degradation is significant when Q falls below f0 f . Thus, in
order to take full advantage of a high value of OSR, the Q of each resonator should be high.
Conversely, when the signal is not especially narrowband, that is, when f0 f is not very
high, the Q requirements for nearly ideal operation are relaxed. The resonant frequency
of the resonator must be accurate for similar reasons. An f0 error that is an appreciable
fraction of f , say, 20%, is usually close to the level of significance. This section presents
several resonator circuits that have been used in the construction of bandpass ADCs,
and comments on the ability of each to achieve an accurate and high-Q resonance.
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Figure 11.18 (a) The LDI loop. (b) A switched-capacitor implementation.

Figure 11.18(a) depicts the lossless discrete integrator (LDI) loop, which may be
realized in switched-capacitor form as shown in Figure 11.18(b). The structure of this
circuit is such that the poles are the roots of the characteristic equation

1
z

(z 1)2 0 (11.3)

The roots of (11.3) are z j 1 2, where 1 2. Clearly, for 1 (i.e.,
0 4), the poles of the LDI loop lie on the unit circle and thus the Q of the resonator
is ideally infinite. Finite opamp gain limits Q, but since Q 100 is readily achieved with
typical opamp gain, finite resonator Q is usually not problematic.
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The frequency of the resonance is given by 0 cos 1( ) cos 1(1 2), which
shows explicitly the dependence of 0 on capacitor ratios. The sensitivity of 0 to ca-
pacitor ratio errors is an increasing function of 0, but even at the relatively high value of

0 2, a 1% shift in capacitor ratios translates to only a 0.6% shift in 0. Since capaci-
tor matching is typically much better than 1%, the 0-accuracy of an LDI-based resonator
is usually sufficient.

The LDI loop provides a good way to implement a switched-capacitor resonator pos-
sessing an arbitrary resonant frequency but does so using two opamps. When the resonant
frequency is f 4, the 2-path transformation described in Section 11.3.1 leads to circuits,
such as that depicted in Figure 11.19, that are able to implement a resonator with a single
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Figure 11.19 A 2-path switched-capacitor f 4 resonator.

opamp. Note that since such circuits implement the desired center frequency by virtue
of their topology rather than through the use a particular set of capacitor ratios, capacitor
errors do not translate into center-frequency errors.

Although the center frequency of the circuit shown in Figure 11.19 is insensitive to
capacitor ratios, mismatch in the paths (in particular, the C and C capacitors) causes the
circuit to be periodically time-varying, instead of time-invariant. The time-varying nature
of the circuit in turn causes mixing of the signal with f 4 and its harmonics, and it is
the mixing of the signal with f 2 that results in the appearance of an image signal, a
frequency-inverted copy of the signal centered on f0. Another source of difficulty in this
circuit stems from the use of clocks whose frequency is f 4. These large-amplitude clocks
can leak into the signal band and produce a tone at the band-center.

The circuit depicted in Figure 11.20 avoids these problem to a large degree. Since the
C and C path capacitors in this circuit are only used for charge storage, and since the
conversion from charge to voltage is performed by the (path-independent) C capacitors,
the time-varying nature of the circuit is essentially hidden. (In practice, the opamp gain
must be high enough to ensure adequate charge-transfer efficiency.) Also, since this circuit
does not use f 4 clocks, this spur-generating mechanism is not an issue.

Figure 11.21 shows the structure of a -C resonator. Since the center frequency is
given by 0 C, and since the value of C implemented with on-chip capacitors
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Figure 11.20 A 2-path resonator with reduced sensitivity to capacitor mismatch [6].
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Figure 11.21 A -C resonator.
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and transconductors typically has 30% variability, the center frequency of a -C resonator
will be poorly controlled unless some means for tuning is provided. A common method
for tuning a -C filter is to adjust all the elements of the filter along with those of a
reference filter until the reference filter has the desired response [7]-[9]. However, since a
resonator can be converted into an oscillator with only a small amount of positive feedback,
it often suffices to measure the oscillation frequency of the resonator itself and adjust
(or C) directly. Since this calibration must be done off line, the designer must ensure that
the drift of over temperature is sufficiently small. If the drift cannot be made sufficiently
small, a continuous-tuning method involving a (scaled) copy of the resonator is the next
best choice.

Once the problem of resonator tuning has been addressed, the next set of concerns
revolve around the resonator’s Q. Nonidealities such as finite output impedance and non-
zero phase shift in the transconductors limit resonator Q. Techniques such as cascoding
can boost output impedance, while the phase shift can be reduced by using a wide-band

, or compensated by adding a small resistor in series with the capacitors.
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R
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R

R

V V

Figure 11.22 An active-RC resonator.

Figure 11.22 shows the structure of an active-RC resonator. Here the center frequency
is given by 0 1 (RC), and once again the highly variable nature of the RC product
necessitates the use of tuning. Tuning may be accomplished by adjusting R (continuously
via MOS devices, or in discrete steps using a resistor array), by adjusting C (here an array
is most practical), or by a combination of the two approaches. Once again, configuring the
resonator as an oscillator is straightforward and eliminates the need for a replica block, but
can only be done when the converter is off line.

V C L

V

Figure 11.23 A resonator based on an LC tank.
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The last resonator we consider is the LC tank driven by a current source, shown in
Figure 11.23. This resonator possesses three attributes that make its use in a bandpass
converter highly advantageous. First, note that inductors and capacitors are noiseless. A
resonator based on an LC tank therefore enjoys a significant noise advantage over the pre-
ceding resonator circuits and this noise advantage is achieved with no power consumption.
Also an LC tank provides low distortion since inductors and capacitors are typically highly
linear. Finally, inductors do not consume voltage headroom, and thus using inductors max-
imizes the available signal swing. It is very rare in circuit design to obtain noise, distortion,
and power advantages simultaneously, but such is the case with a bandpass ADC made
with LC tanks.

There are disadvantages to using LC tanks within a bandpass modulator, but the afore-
mentioned advantages provide a powerful motivation to overcome the disadvantages. The
first disadvantage is that inductors resist integration: on-chip inductors possess only a few
nanohenries of inductance and thus are only useful at frequencies above 1 GHz or so. For
lower frequencies where external inductors are required, a bandpass ADC would typically
use an LC tank only as its first resonator, where the noise and distortion advantages are
most compelling. The tolerance of external inductors is also a potential problem, but this
problem is readily overcome by including an on-chip capacitor array to tune the tank’s
resonant frequency.

The second disadvantage relates to programmability. Since it is impractical to tune
inductance electronically, an LC-based bandpass modulator typically supports not much
more than an octave of tuning range. Multiple tanks are needed to support wider ranges.

The final disadvantage associated with using LC tanks in a bandpass modulator re-
sults from the fact that an LC tank is a second-order system and so requires two degrees
of freedom for control purposes. In a feedback topology, we would like to use a current
DAC in parallel with the capacitor and a voltage DAC in series with the inductor. Although
current DACs with high output resistance are quite practical, voltage DACs with low out-
put resistance are not, since even one ohm of resistance can reduce tank Q significantly.
Similarly, if we use a feedforward topology instead of a feedback one, we would need to
sense the capacitor voltage and the inductor current in order to feed these states into subse-
quent stages. Again, sensing the capacitor voltage is easy, but sensing the inductor current
without degrading tank Q is difficult. We now summarize three methods that have been
proposed to overcome this controllability/observability problem.
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Figure 11.24 An LC-based bandpass ADC with feedforward paths into an active-RC back-end
[10].

The most elegant was already introduced in the block diagram of Figure 11.16. Fig-
ure 11.24 provides a circuit-level representation of the concept in the context of a 3-
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resonator feedback system. By adding a feedforward element from each front-end tank
to the second integrator in the back-end active-RC resonator, two degrees of freedom are
created that compensate for the two degrees of freedom lost by not having voltage-mode
DACs.
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Figure 11.25 Using multiple feedback DACs provides full control over the NTF in an LC-based
bandpass ADC [11].

A second method (Figure 11.25) uses pairs of DACs with different timing to restore
the missing degrees of freedom. In the notation of Appendix B, timing such as [0 0 5] plus
[0 5 1] (“return-to-zero” and “delayed return-to-zero”) has been suggested [11].
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Figure 11.26 Voltage feedback to an LC tank; (a) circuit (b) model [2].

A more recent approach is illustrated in Figure 11.26. In this arrangement only a
small fraction of the tank capacitance is connected to a voltage DAC and thus nonzero
output resistance in the voltage DAC is less critical.

11.5 Bandpass Modulator Example

Figure 11.27 shows the block diagram of a 65-nm CMOS IC which is capable of digitizing
signals from DC to 1 GHz with bandwidths up to 100 MHz [1]. The incoming signal can
be routed through either a low-noise amplifier (LNA) or a programmable attenuator. The
LNA has 12 dB of gain range, while the attenuator provides a further 27 dB of gain control.
Both blocks provide a 50- termination when enabled. The output of the LNA/attenuator is
digitized by a highly programmable continuous-time lowpass/bandpass ADC whose digital
output is down-converted and filtered by an on-chip digital block. The IC also includes a
synthesizer for generating the 2–4 GHz ADC clock.

The architecture of the ADC in bandpass mode is shown in Figure 11.28. The ADC
uses a sixth-order continuous-time feedback topology with 16-step quantization and [1, 2]
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Figure 11.27 An IC containing a highly programmable ADC [1].
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Figure 11.28 Simplified ADC architecture in bandpass mode.
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feedback timing. The first resonator is an LC tank while the remaining two resonators are
active-RC. The G53 component supplies the missing degree of freedom to support arbitrary
sixth-order NTFs with five feedback DACs. The I7 feedback DAC and associated resistor
(highlighted) implement the direct feedback term needed to compensate for the chosen
DAC timing.

In order to support a wide variety of clock rates, center frequencies and signal band-
widths, the ADC has a high degree of programmability. Programmable parameters include
the LSB currents of the DACs, the LSB size of the flash ADC, all integrating capacitors,
and every conductance. Each of these parameters is controlled with 8-bit resolution. Even
the inductors can be chosen from one of two pairs via the associated cascode devices. In
addition to the bandpass topology shown in Figure 11.28, the ADC can be configured as
a 6th-order lowpass modulator by replacing the LC tank with an active-RC resonator. The
lowpass mode is used for center frequencies from dc to 200 MHz while the bandpass mode
uses one set of inductors for 200–500 MHz and the other set for 500–1000 MHz.
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Figure 11.29 Example NTF/STF for f0 200 MHz and 1 GHz.

Figure 11.29 illustrates the theoretical NTF and STF for center frequencies of
200 MHz and 1 GHz. In each case, the out-of-band gain was chosen to provide 65 dB
of quantization noise attenuation for a bandwidth of 70 MHz. The resulting 10 dB of
out-of-band NTF gain is reasonable with 16-step quantization. The STF has a zero at dc
courtesy of the inductor in the LC tank. At low center frequencies this zero makes it dif-
ficult to position the NTF/STF poles such that the STF is flat. The top plot shows that an
acceptable STF can be achieved for f0 as low as f 20 200 MHz. The lower plot shows
that when f0 f 4 1 GHz the STF is extremely flat and wideband. Such a wide and
flat STF response is desirable because it yields a low group-delay variation.

11.5.1 LNA

Figure 11.30 shows a simplified schematic of the LNA. The LNA uses common-gate (CG)
transistors to provide a 50- match and programmable-width common-source (CS) tran-
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Figure 11.30 Variable-gain noise-canceling LNA.

sistors to provide 12 dB of gain range. This LNA topology takes some advantage of the
noise-canceling principle [12][13].

Figure 11.31 Analysis of the noise from a common-gate transistor at the 6-dB gain setting.

To understand noise cancellation in this circuit, consider the operation of the circuit
at the 6-dB gain setting, where the transconductances of the CG and CS transistors are
both 1 R . As illustrated in Figure 11.31, since the source of the CG transistor presents
an impedance of 1 , and since R 1 , half of the noise current i injected into the
source of the CG transistor flows through R to ground and then back into the out+ terminal
through the load, while the other half of the noise current just recirculates through the CG
transistor. At the 6-dB gain setting the transconductance of the CS transistor is 1 R , and
since the gate voltage of the CS transistor is R i 2, the CS transistor also carries a current
i 2, which is drawn from the out terminal. Thus, at the 6-dB gain setting the noise of the
CG transistor appears as a common-mode signal, which is rejected by subsequent stages.
Of course, the noise of the CS transistor is not cancelled, and, unlike the standard noise-
canceling circuits, the cancellation of the noise of the CG transistor only occurs at the 6-dB
gain setting.

11.5.2 Attenuator

The attenuator (Figure 11.32) takes advantage of the virtual ground provided by the cas-
code transistor to yield a wideband programmable attenuator with noise properties superior
to those of an attenuator with impedance matching at both input and output. To see why,
consider the simplified schematic shown in Figure 11.33 where 0 x 1 represents

in in

CG CG

out out

CS

I

i 2

2

i 2

i 2 R

i
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Figure 11.32 Programmable attenuator.
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the fraction of the programmable conductance connected to the output node. Since the
transfer function from V to I is xG 2, the density of the I noise due to the source
conductance G is

n
4kT

G

xG

2

2
kTGx2 (11.4)

The conductance seen looking into the output is the series combination of xG and (2 x)G:

G
xG(2 x)G

2G
x(1 x 2)G (11.5)

Since the network is passive, the total I noise density is 4kTG and the noise factor is
therefore

F
4kTG

n

4 2x

x
(11.6)

In contrast, the noise factor of a matched attenuator terminated with a matching resistor is

Fmatched
2
x2 (11.7)

The plot in Figure 11.33 compares these two noise expressions. At 0 dB of attenuation
the noise figure of both arrangements is 3 dB. However, the noise figure of the matched
arrangement increases dB for dB of attenuation whereas the noise figure of the integrated
attenuator increases less quickly. At an attenuation of 12 dB the matched system has NF
15 dB whereas the noise figure of the integrated attenuator is 11.5 dB. As the figure shows,
the difference becomes more pronounced at higher attenuation settings. The integrated
attenuator is an example of a common phenomenon, namely that building more of the
signal chain into the ADC can yield a better trade-off between fundamental parameters
such as noise figure and attenuation than traditional arrangements.

At the 0-dB gain setting of the LNA or the 0-dB attenuation setting of the attenuator
the (trans-)conductance from the input to the virtual ground is 1 50 . Since the first
feedback DAC has a full-scale of 4 mA at its maximum setting, the full-scale of the ADC
under these conditions is therefore 4 mA 50 200 mVp or 4 dBm, which is 1/5 that of
typical commercial ADCs. Decreasing the full-scale of the first feedback DAC or engaging
the LNA can be used to reduce the effective full-scale of the ADC even further.

11.5.3 Amplifiers

The amplifier requirements depend on the location of the amplifier in the modulator loop.
For example, the amplifier used within the first active-RC resonator associated with low-
pass mode needs to have high gain and large swing since it is used in the most critical
stage. The gain and swing requirements in subsequent stages are less stringent, but since
those stages must process signals up to 1 GHz whereas the active-RC version of the first
resonator only processes signals up to 250 MHz, the back-end amplifiers need higher band-
width than the front-end amplifiers. Two amplifier variants were designed to cover these
disparate requirements. The A1 amplifier of the first resonator in lowpass mode needs at
least 60 dB of gain from dc to 250 MHz whereas the A3 amplifier used within the second
and third resonators requires 40 dB of gain from dc to 1 GHz. The A1 amplifier uses the
+2.5-V IO supply to provide large swing whereas the A3 amplifier operates from the 1-V
core supply. Both amplifiers make heavy use of feedforward compensation.
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Figure 11.34 Structure of the A1 fifth-order feedforward amplifier.

Figure 11.34 shows the structure of the fifth-order A1 amplifier. In keeping with
the principle of feedforward amplifier design, there are 1st-, 2nd-, 3rd-, 4th-, and 5th-
order paths connecting the input to the output. The unity-gain frequencies of the paths are
designed to provide a smooth transition from 5th-order roll-off with large phase lag to near
1st-order roll-off with a phase lag substantially less than 180 . Since the low-frequency
gain of the amplifier is determined by the gain of the longest path, the low-frequency
noise of the amplifier is dominated by the noise of the first on that path while the
burden of driving the load is borne by the last amplifier on that path. As indicated in
Figure 11.34 these two blocks are responsible for roughly half of the amplifier’s 100-mW
power consumption. Thus the amplifier is reasonably power-efficient despite its complex
structure.

2 5 V

2 5 V

Figure 11.35 A1’s input .
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As an example of the transistor-level implementation of a stage used within A1,
Figure 11.35 shows the topology used in the input stage. This stage consists of a
complementary differential pair operating on the 2.5-V supply connected to a folding stage.
The complementary pair maximizes the I ratio while the folding stage interfaces
to the 1-V stages used in the lower portion of the amplifier.
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Figure 11.36 Amplifier frequency response.

Figure 11.36 compares the frequency responses of the 5th-order A1 and 7th-order A3
amplifiers. As this figure shows, A1 maintains 60 dB of gain out to 250 MHz, correspond-
ing to a gain-bandwidth product of 250 GHz. Thanks to the high-order roll-off, the actual
unity-gain frequency is a more practical f 6 GHz and the phase margin is 75 . In con-
trast, the higher frequency A3 amplifier provides 40 dB of gain out to 1.5 GHz (i.e., an
equivalent GBW of 150 GHz) and achieves f 15 GHz with a phase margin of 64 .
These simulation results demonstrate the utility of the feedforward technique in achiev-
ing high gain over a wide bandwidth without requiring an impractically high unity-gain
frequency.

11.5.4 Measurements

Figure 11.37 shows measured STFs and noise spectral density (NSD) for several f0 settings
at a clock frequency of 3 GHz and a bandwidth of 75 MHz. First, note that the STFs are
quite flat and broadband. The measurements indicate an STF variation of less than 0.5 dB
over 100 MHz. The NSDs demonstrate the flexible nature of the ADC. With L 43 nH,
the ADC’s center frequency can be tuned from 150 MHz to 220 MHz, and using L 20 nH
allows the center frequency to vary from 220 MHz to 380 MHz. For a given inductor size,
the in-band noise (IBN) tends to decrease as the center frequency increases because the
LC tank provides higher gain and hence more attenuation of back-end noise as the center
frequency goes up. The voltage swing on the LC tank increases as well, so there is an upper
limit on the center frequency that can be supported by a given inductance. The U-shaped in-
band NSD is due to the fact that the gain of the LC tank is less at the edge of the passband
and thus back-end noise contributes more to the total noise at the passband edges. The
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Figure 11.37 Measured STFs and noise spectral density for several f0 settings.

depth of the U depends on the ADC’s configuration, but at BW 75 MHz the observed
NSD variation across the passband is about 5 dB. Since in Figure 11.37 NBW 275 kHz,
the conversion from the units of the vertical axis to dBFS/Hz is 10 log10(NBW) 53 dB
and thus the NSD minima in Figure 11.37 are at 105 53 158 dBFS/Hz. With
optimized settings (attenuation = 12 dB, f0 350 MHz, BW 50 MHz, L 20 nH, etc.),
NSDs as low as 161 dBFS/Hz have been attained.
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Figure 11.38 Single-tone spectrum at f0 400 MHz.

Figure 11.38 shows the in-band spectrum observed after downconversion and deci-
mation with a 3-dBFS input at approximately 400 MHz. Observe the clean spectrum (the
largest spur is at 100 dBc), and note that even though the signal is at 400 MHz, an SNR
of 72 dB is achieved with a bandwidth of 75 MHz.

To properly demonstrate linearity in a bandpass system, a two-tone test is required.
Figure 11.39 shows a two-tone result in which the IMD3 terms are below 87 dBc. With
FS 4 dBm, this level of distortion with 8-dBFS tones yields an input-referred third-
order intercept of I IP3 12 87 2 31 dBm.
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Figure 11.39 Two-tone spectrum at f0 350 MHz.
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As a final measure of the ADC’s performance, Figure 11.40 shows the single-tone
SNR as a function of input power with and without gain control. With a fixed attenuation
of 12 dB, the ADC demonstrates an instantaneous dynamic range of 80 dB, and a peak
SNR of 74 dB with a 75-MHz bandwidth. Engaging the LNA extends the lower input limit
by 18 dB and allowing increased attenuation adds another 14 dB on the high end (blue) for
an overall dynamic range of 112 dB.
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Figure 11.41 Figure-of-merit plot for bandpass ADCs.

Table 11.1 lists the characteristics of the ADC and Figure 11.41 puts this ADC into
context by comparing its figure-of-merit (FoM) with other bandpass converters. As the fig-
ure shows, the ADC achieves a respectable FoM (159 dB) with state-of-the-art bandwidth.

Table 11.1 ADC summary.

Parameter Value Notes
Z 50
f0 200-400 MHz
f 2-4 GHz

Full-scale 16 to +23 dBm
BW up to 100 MHz 3-dB NSD degradation
NSD 157 dBFS/Hz BW = 75 MHz; 12-dB att.

Current 110, 620, 20 mA 2.5, 1.0, 2 5 V supplies
Power 1 W Includes digital filter

Technology 65 nm CMOS
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11.6 Quadrature Signals

This section reviews quadrature signal processing in preparation for the upcoming section
on quadrature modulation. As will be explained in greater detail shortly, quadrature
signals are produced by quadrature mixers, which are themselves useful because of their
image-rejection properties.

A quadrature signal is an abstract signal composed of two real signals, and ,
viewed as a single complex entity j . Since a quadrature signal has a non-
zero imaginary part, its Fourier transform need not be symmetric about zero frequency. In
other words, with quadrature signals positive frequencies and negative frequencies contain
independent information.

11.6.1 Quadrature Mixing

e

u(t) (t) u(t)

cos ( t)

sin ( t)

(t)

(t)

Figure 11.42 Quadrature mixing.

Quadrature mixing is the most common way to make quadrature analog signals. In a
quadrature downconversion mixer, a real (or quadrature) signal is multiplied by the quadra-
ture signal e LO , which we will refer to as the LO (for local oscillator). The LO consists
of two real signals, cos LOt and sin LOt , as illustrated in Figure 11.42. Suppose that
the input to such a mixer is the real signal u(t) A cos( ( LO IF)t ) . Then the output
of the mixer is

(t) A cos ( LO IF)t e LO

A
e ( LO IF) e ( LO IF)

2
e LO

A

2
e IF

A

2
e (2 LO IF) (11.8)

Since this text has a strong circuits emphasis, denoting the components of a quadrature signal by and may
lead to confusion, given that is used to represent current, while is used to represent quality factor or charge.
Similarly, denoting the components and leads to confusion when dealing with transforms. (The imaginary
part of the Laplace transform of a quadrature signal is not the Laplace transform of the imaginary component of
the quadrature signal.) Instead of using either of the two prevailing conventions, we adopt the notation (inspired
by the Cartesian representation of a complex number) that a quadrature signal is decomposed as ,
and refer to the components of as the and components, respectively. The Laplace transform of is then

, where and are the Laplace transforms of the and components of .
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Removing the second term in the expression above with a lowpass filter leaves a frequency-
shifted version of the original signal, centered at the angular frequency IF.

A quadrature downconversion mixer is useful because it performs a frequency trans-
lation operation that distinguishes between signal frequencies above the LO and signal
frequencies below the LO, whereas a conventional mixer does not. In practice, the abil-
ity of a quadrature mixer to distinguish between frequencies offset from the LO by equal
positive and negative amounts is limited by mismatch between the two real mixers and
imperfect quadrature in the two components of the LO. The image-rejection ratio (IRR)
specifies the signal power appearing at IF relative to the signal power appearing at IF
as a result of an input at LO IF. For small errors, IRR is approximately [14]

IRR 6 10 log10
A

A

2
( )2 (11.9)

where A A is the relative amplitude imbalance and is the phase error (in radians).
Figure 11.43 indicates that an amplitude imbalance of 2% (0.17 dB), or a phase error of
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Figure 11.43 Image-rejection ratio as a function of amplitude imbalance and phase error.

0.02 rad (1.1 degree), is sufficient to limit IRR to 40 dB. Higher image suppression requires
proportionally greater amplitude and phase accuracy.

11.6.2 Quadrature Filters

A quadrature signal may be filtered using a quadrature filter. The transfer function (H) of
a quadrature filter differs from that of a real filter in that the poles and zeros of H need not
come in complex-conjugate pairs, that is, H may have an asymmetric frequency response.
Formal manipulation of such transfer functions in symbolic form is straightforward; real-
izing a quadrature filter is more cumbersome. One way to implement a quadrature filter
H starts with decomposing H into H H jH , where H and H are real transfer
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Figure 11.44 A quadrature filter.

functions. The output of the filter is

V HU

(H jH )(U jU )
(H U x H U ) j (H U H U )
V jV (11.10)

which indicates that a quadrature filter may be implemented with the lattice structure shown
in Figure 11.44. This figure depicts a two-input/two-output linear system in which the
transfer function from the input U to the output V is equal to that from U to V , while
the transfer function from U to V is the negative of that from U to V . In practice, these
symmetries are not exact and the reader may well wonder what impact such an imperfec-
tion has.

H11U

U

V

V

(a) (b)

HU V

con j

H

U

H21

H22

H12

Figure 11.45 Mismatch in a quadrature filter creates an image response.

To address this question, Figure 11.45(a) shows an arbitrary two-input/two-output
real linear system, whose inputs and outputs are to be interpreted as quadrature signals. As
depicted in Figure 11.45(b), this system can be represented with two complex filters: one
(H) operating on the unaltered signal, U, and the other (H ) operating on its conjugate, U .
To derive the equivalence, simply write the output of the second system in expanded form:

V HU H U

(H U H U ) j (H U H U ) (H U H U ) j ( H U H U )
(H H )U x (H H )U j ((H H )U x (H H )U ) (11.11)
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Thus,
H11 H12
H21 H22

H H H H

H H H H
(11.12)

or inversely
H H

H H

1
2

H11 H22 H21 H12
H11 H22 H21 H12

(11.13)

The upshot of (11.11–11.13) is that path mismatch (H11 H22 and/or H12 H21)
causes the output of a quadrature filter to contain the conjugate of the input, multiplied
by the image transfer function H H jH , where H H11 H22 and H

H12 H21. Since taking the conjugate of the input reflects its Fourier transform about f 0,
i.e. (x(t) X ( f )) (x (t) X ( f )), the image transfer function is responsible for
transferring signal energy from positive frequencies to negative frequencies, and vice versa.
We will see shortly that in a quadrature modulator this mirroring action can be highly
detrimental.

At this point, it is helpful to consider two examples. First, let us suppose that we want
to implement a quadrature filter with transfer function

H (s) 0
s j 0

(11.14)

Since this is a first-order transfer function with a single pole at s j 0, the resulting filter
will therefore be a positive-frequency resonator. The H and H components of H are
found by multiplying both numerator and denominator by the complex-conjugate of the
denominator:

H (s) 0
s j 0

s j 0
s j 0

0s j 2
0

s2 2
0

(11.15)

Thus, the required filters are

H (s) 0s

s2 2
0

and H (s)
2
0

s2 2
0

(11.16)

These two second-order filters, as well as the computations of (11.10), can be implemented
with only two real integrators configured as shown in Figure 11.46.

0
s

0
s

U

U

U U jU

V

V V jV HU

V

Figure 11.46 A quadrature resonator, H (s) 0 (s j 0).

As a second example of quadrature filtering, consider the quadrature differential cir-
cuit shown in Figure 11.47(a). Our goal is to find the complex transfer function from u to
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Figure 11.47 (a) A polyphase filter. (b) Equivalent quadrature quarter-circuit.

. The brute-force method is to start by writing the four KCL equations associated with
the output nodes:

(G sC)V GU sCU

(G sC)V GU sCU

(G sC)V GU sCU

(G sC)V GU sCU (11.17)

Next we use the definition of a quadrature differential signal, namely

V (V V ) j (V V ) (11.18)

to convert the four equations in (11.17)) to one:

(G sC)V (G jsC)U (11.19)

from which we find the transfer function

H
G jsC

G sC
(11.20)

A more direct method is to analyze the equivalent quadrature quarter-circuit. The
rules for constructing a quarter-circuit from a circuit with four-way symmetry are as fol-
lows:

a. If four equal elements connect corresponding phases of two signals (e.g., the conduc-
tance G in Figure 11.47(a)), then those elements are represented with a single element
connecting the quadrature signals.

b. If the elements connect phases that are offset by 90 (e.g., the capacitance C), then
those elements are represented with a pair of elements driven by j voltage buffers as
shown in Figure 11.47(b). The j buffer is attached to the signal ( in Figure 11.47(a))
whose positive x phase is coupled to the other signal’s positive phase. The j buffer
is connected to the other phase.
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c. If the elements connect phases that are offset by 180 , then those elements are repre-
sented with either a pair of elements driven by 1 voltage buffers, or, as is often done
when constructing a differential half-circuit, with a single negative element.

Applying KCL to the output node of the circuit shown in Figure 11.47(b) yields

G(U V ) sC( jU V ) 0 (11.21)

by inspection, from which (11.20) follows. With practice, an equivalent quadrature quarter-
circuit can be visualized without drawing it explicitly and can thereby be analyzed quite
quickly.

+
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−
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cos ( t 4)

sin ( t 4)

cos ( t 4)

sin ( t 4)

2cos( t)

2cos( t)

G C

Figure 11.48 Using a polyphase circuit to generate a quadrature signal.

Since H has a zero at a negative frequency, s j , where G C, applying
the real signal u 2 e e to the circuit as shown in Figure 11.48 yields an
output with only positive-frequency content. This circuit is commonly used to create the
quadrature LO phases for a quadrature mixer from a differential sine wave. Since the
quadrature is perfect at only one frequency, several polyphase filters can be cascaded to
widen the frequency range.

11.7 Quadrature Modulation

As with other modulator types, the starting point in the design of a quadrature modulator
is the NTF. The causality constraint (h(0) 1) is the same as that of a real modulator,
and optimized zeros are as useful in quadrature systems as they are in real systems. The
stability-imposed constraints on the out-of-band NTF gain appear to be similar between
real and quadrature systems. The only real difference (pun intended) is that the pole/zero
distribution of a quadrature NTF need not be symmetric about the real axis. Figure 11.49(a)
shows the pole-zero plot of a quadrature NTF intended for an f0 f 4, OSR 32 ap-
plication. Observe that the NTF zeros are located only in the positive-frequency passband.
Figure 11.49(b) plots the associated NTF magnitude. The frequency response resembles a
lowpass response that has been shifted by f 4, and indeed one way to obtain a quadrature
NTF is to start with a lowpass NTF and rotate its poles and zeros by multiplying them by
e 2 0 .
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Figure 11.50 shows the simulated quadrature output data of such a modulator when
the input is a 3 dBFS quadrature sine wave. As with the bandpass example, the correspon-
dence between the input and output waveforms appears very coarse in the time domain, but
a much clearer picture emerges in the frequency-domain plot of Figure 11.51, from which
an SQNR of nearly 100 dB is obtained.

−0.5 −0.25 0 0.25 0.5
−140

−120

−100

−80

−60

−40

−20

0
SQNR = 99 dB
@ OSR = 32

Normalized Frequency

dB
F

S
/N

B
W

NBW = 4.6×10–5

Figure 11.51 Simulated output spectrum for a quadrature modulator.

Nonidealities such as finite resonator Q and resonance frequency shift have deleteri-
ous effects that are similar in magnitude to those found in real systems and so are usually
not problematic. However, quadrature errors caused by mismatch in the two channels can
be a serious source of degradation. To see this, observe that in the spectrum of Figure 11.51
the level of the quantization noise in the passband (around f 4) is nearly 65 dB below the
level of the quantization noise in the image band (around f 4). Path mismatch on the
order of 0.1% (caused, for example, by mismatch in the full-scale outputs of the DACs
that feed back to the first quadrature resonator) is sufficient to reflect enough image band
noise to degrade the SQNR by more than 6 dB. Since much more stringent matching would
be needed to ensure negligible performance degradation, path mismatch can easily be the
dominant error source in a quadrature modulator.

Two methods for countering path mismatch have been described in the literature. The
first involves adding one or more image zeros (and corresponding image poles) to the NTF
so that the noise present in the image band is reduced. The depth of the image notch is
adjusted to achieve the desired immunity to path mismatch. In addition to the increased
hardware complexity, reducing the mismatch sensitivity in this way comes at the price of
a reduction in the suppression of quantization noise and possibly a reduction in the stable
input range. The second method for combatting mismatch applies only to DAC mismatch,
and involves the use of quadrature mismatch-shaping [15].

The structure of a single-loop quadrature modulator follows that of real modulators,
namely a loop-filter attached to a quantizer whose output is fed back to the loop-filter
via DACs. The loop-filter consists of quadrature resonators such as those shown earlier
in Figure 11.46. The usual variety of feedback and feedforward topologies, as well as
single-loop and multi-loop architectures, are all applicable to quadrature modulators. For
example, a feedback topology is depicted in Figure 11.52, while [16] describes the use of
a feedforward topology. Note that structure in Figure 11.52 indicates the use of a single
pair of DACs for each feedback path, that is, each feedback coefficient is assumed to be
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Figure 11.52 A quadrature modulator employing the feedback topology.

real. A complex feedback coefficient, which would require two DAC pairs, can be forced
to be real by rotating it via multiplication by e and then multiplying the incoming and
outgoing interstage coupling coefficients of that stage by e and e , respectively. Since
complex interstage coefficients are usually less troublesome to implement than complex
DACs, this operation usually simplifies the loop-filter.

c0
s j 1

c1
s j 0

c2
s j 0

c3
s j 0

Figure 11.53 A quadrature modulator with a parallel path for the image resonator.

If the NTF contains image zeros, it is not advisable to simply tack the image resonator
onto the end of a cascade of positive-frequency resonators, since the image resonator typ-
ically attenuates in-band signals. A more practical topology is shown in Figure 11.53 in
which the image resonator(s) are placed in parallel with the in-band resonators. This topol-
ogy has the added benefit of putting an STF zero in the image band.

As suggested in Figure 11.52, a quadrature DAC can be implemented with a pair of
independent real DACs. Figure 11.54 compares this implementation with one that uses a
single current-mode DAC consisting of elements with 4-way switching. Figure 11.54 also
shows the constellations using two elements (so that the total DAC current is the same). In
the first architecture, one DAC element is dedicated to the x component and the other is
dedicated to the component. In the second architecture, both elements can contribute to
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Figure 11.54 Comparison of quadrature DAC implementations.

the x and components and thereby support a signal amplitude that is 3 dB higher than the
first architecture. This extra range signal range can equate to a 3-dB FOM improvement
for the DAC.
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Figure 11.55 Quadrature quantizer for 4-way DAC elements.

The quantizer in a quadrature modulator can be implemented with a pair of real quan-
tizers. In this case, the unary codes produced by a pair of flash ADCs can be applied to a
set of 2-way DAC elements such as those shown in Figure 11.54(a). To interface to a set
of 4-way elements, the arrangement depicted in Figure 11.55 may be used. Here, a pair of
real quantizers are driven by the sum and difference signals and their unary outputs a and
b are decoded to produce the drive signals for individual DAC elements. For example, as
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illustrated in Figure 11.55 for M 1 element, the required decoding is

x a b

a b

x a b

a b (11.22)

For arbitrary M it suffices to decode pairs of bits from the a and b signals using (11.22).
Note that the pairing and ordering of the bits in the unary signals is irrelevant, and thus
the signals may have their bits scrambled. The reader may wish to verify these claims for
M 2 using the diagram in Figure 11.55.
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Figure 11.56 A high-Q quadrature resonator (a) differential circuit; (b) equivalent quadrature
quarter-circuit.

Section 11.4.2 made note of the significant advantages associated with using an LC
tank within a bandpass ADC. Unfortunately, a quadrature equivalent of an LC tank does
not appear to exist. Despite the numerous indications that quadrature ADCs are natural
extensions of real ADCs, it appears that passive quadrature resonances do not exist in
nature. As some compensation for this disappointing fact, Figure 11.56 will be used to
show that an active-RC resonator has a particularly attractive realization in quadrature
form. Normally, the amplifiers in an active-RC resonator need high gain at the resonance
frequency in order to ensure a high-Q resonance. Achieving high gain is difficult in an
active-RC resonator because the amplifier must drive both a resistor and a capacitor and
conventional wisdom is that in such cases the amplifier needs to provide a low output
impedance. However, as we will show shortly, the circuit in Figure 11.56 is able to achieve
a high-Q resonance by using a plain transconductor.

Applying KCL at the U and V nodes of the quadrature quarter circuit in Fig-
ure 11.56(b) gives

(sC G)U (sC jG)V (11.23)

and
(sC G)V (sC jG 2 )U (11.24)
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Eliminating U,

(sC G)2V (sC jG 2 )(sC G)U
(sC G)2V (sC jG 2 )(sC jG)V

((sC)2 2sCG G2)V ((sC)2 jG(sC) 2 (sC) jG(sC) G2 2 j G)V
(2sC(G ) 2 j G)V 0 (11.25)

Thus, we see that the pole of the system is at

s
jG

C(1 G )
(11.26)

This is a pole that is on the j axis, i.e. has infinite Q, regardless of the value of . The
only effect of finite is that the pole is displaced from its ideal location. For reasonable
values of , this displacement can be overcome by tuning either G or C. This analysis
contains a few assumptions that deserve mention, namely negligible phase shift in the
transconductor, negligible loading from subsequent stages, and input signals injected as
currents. If the designer is unable to satisfy these assumptions, the associated degradation
needs to be checked to ensure that it is acceptable.

11.8 Polyphase Signal Processing

Having seen how quadrature signal processing endows a mixer with image rejection and
increases the bandwidth of a ADC, the reader may wonder if going beyond a quadrature
representation offers further advantages. One way to extend the concept of quadrature
signal processing is to observe that a quadrature signal consists of two phases and therefore
consider a signal consisting of three phases: a, b and c. If we combine the three phases
according to

z a qb q2c (11.27)

where
q e

2
3

(11.28)

then we have a way to represent a complex signal with three real signals. We now show
that two very helpful properties emerge from this generalization: elimination of the 3LO

term in a square-wave mixer and rejection of third-order distortion.

Consider the 3-phase LO signal illustrated in Figure 11.57. Since each phase of the
LO is non-overlapping with the other two, the mixing operation can be performed by a
passive mixer which switches the input signal into each phase of the output according to
which phase of the LO is active. Taking the Fourier transform of the composite LO signal
reveals that the spectrum consists of the desired e fundamental component plus terms
spaced by multiples of 6 on either side. Thus, the LO signal is devoid of many spurious
terms including the image ( LO) and 3LO components, and the RF filtering needed in
advance of the mixer can be relaxed. A lesser advantage of three-phase mixing compared
to quadrature mixing is that the fundamental has a magnitude of 3 , which is only 0.4 dB
below the total power of the LO signal and thus the noise penalty associated with the non-
fundamental components of the LO is small. In contrast, quadrature square-wave mixing
entails a 1-dB penalty.
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The second major advantage of three-phase signal processing relates to distortion
cancellation. We know that differential circuits reject second-order distortion; it turns out
that three-phase circuits reject third-order distortion. To see why, consider the third-order
nonlinearity

f (x) 4x3 3x (11.29)

Subjecting a sine wave cos( t ) to this nonlinearity simply triples the argument, yield-
ing a distortion term cos(3 t 3 ). Applying this nonlinearity to the three-phase signals

a cos( t)
b cos( t )
c cos( t ) (11.30)

yields distortion terms

a3 cos(3 t)
b3 cos(3 t 3 )
c3 cos(3 t 3 ) (11.31)

Since 3 2 , using (11.27) gives

z3 a3 qb3 q2c3 (1 q q2) cos(3 t) 0 (11.32)

The third-order distortion terms therefore appear as a common-mode signal that is rejected
when the complex signal is formed.

A similar analysis of the distortion products under two-tone excitation shows that
although the sum terms (3 1, 2 1 2, 1 2 2 and 3 2) cancel, unfortunately the
difference terms (2 1 2 and 2 2 1) do not. As a result, polyphase signal processing
is not quite the panacea for distortion that (11.32) might suggest. Nonetheless, for receiver
scenarios in which a single large interferer is present, polyphase signal processing affords
some relief.

Polyphase circuits are a natural extension of quadrature signal processing and play to
one of the strengths of VLSI circuits, namely replication of matched elements. As with

This convenient property comes from the fact that ( ) is a Chebyshev polynomial. Expanding a nonlinearity
into a weighted sum of Chebyshev polynomials rather than a plain power series simplifies analysis of harmonic
distortion.
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differential signal processing or quadrature signal processing, the advantages of polyphase
signal processing come with no power penalty, to a first-order approximation. The circuits
are also aesthetically pleasing, as evidenced by Figure 11.58, which depicts a 6-phase
positive-frequency resonator. Such a circuit could be used in the loop-filter of a polyphase
bandpass ADC.

11.9 Conclusions

The delta-sigma ADCs described in this chapter can be used to digitize narrowband band-
pass and narrowband quadrature signals. No ADC architecture is able to focus its re-
solving power on a particular frequency band the way bandpass ADCs can. In addition
to the standard advantages of modulation such as robustness, high linearity, and, for
continuous-time implementations, easy interfacing, inherent anti-aliasing, and a small and
readily-adjustable full-scale, the advantages of bandpass modulation include

a. Simplified realization of a superheterodyne receiver.

b. Perfect I/Q balance.

c. Immunity to dc offset and 1 f noise.

d. Even-order distortion products of in-band signals fall out-of-band.

e. (Soon) Digitization of RF signals without analog mixing.
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Efficient realizations of high-performance bandpass ADCs are possible, especially if
a physical resonance, such as that of an LC tank, is exploited in the construction of the
loop-filter. A bandpass ADC supporting center frequencies up to several hundred MHz is
commercially available now, whereas quadrature bandpass ADCs are not yet available in
stand-alone form.
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CHAPTER 12

INCREMENTAL ANALOG-TO-DIGITAL
CONVERTERS

In contrast with all other converters discussed in this book, the incremental A/D converters
(IADCs) described in this chapter are Nyquist-rate data converters. For such converters,
each digital word generated at the output depends only on the samples of the analog input
during the conversion interval; the behavior of the input outside this interval is immaterial.
This property is obtained by resetting the modulators within the IADC. IADCs are
typically used to convert narrowband signals with very high accuracy. They are often used
in biomedical as well as instrumentation and measurement applications.

12.1 Motivation and Trade-Offs

In many instrumentation and measurement applications, integrated sensor interface circuits
are required to prepare the analog sensor output for digital signal processing. Typical ap-
plications include digital voltmeters, image sensors, and biosensors. In some cases, such as
image sensors and electroencephalograms, a single interface should also be shared among
many sensors. Often these sensors are battery-powered devices, and hence power dissipa-
tion in the interface circuitry is of great concern. The interface usually requires a low-noise
amplifier, a noise-suppressing anti-aliasing filter, and an analog-to-digital converter. In a
typical application, the specifications of the ADC may include one or more of the following
requirements:

407
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a. High absolute accuracy (over 20 bits).
b. Small offset and gain errors (a few V).
c. Low output noise (a few V).
d. High linearity (over 16 bits).
e. Low power (a few W).
f. Ease of multiplexing for multi-sensor systems.

The available ADC configurations for such high-accuracy requirements include dual-
slope Nyquist-rate converters and delta-sigma modulators. However, dual-slope converters
are very slow. They require many clock periods to obtain an output word: the necessary
number of clock periods is 2 1 for N-bit accuracy. ADCs are much faster than the
dual-slope ones, but they are also more complicated. They need digital post-filters, and
generally exhibit gain and offset errors. They are also subject to idle tones and instability.
Since ADCs rely on both analog and digital memory to achieve high accuracy, they
can only be shared among multiple sensors if all memory elements are replicated many
times. Also, due to their elaborate digital filters, they have significant latency between
their analog inputs and digital outputs.

A different ADC scheme, one that applies the noise-shaping algorithm of ADCs,
but only within the sample-by-sample operation of a Nyquist-rate ADC, is the incremen-

tal ADC (IADC) discussed in this chapter. IADCs are well suited for satisfying the six
requirements listed above. Figure 12.1 shows the basic block diagram of the IADC.

ΔΣ ADC 
Decimation 

Filter 
M u

Reset Reset

Figure 12.1 IADC block diagram.

The IADC scheme is similar to that of a single-stage ADC. The main difference is
that the reset switches are turned on between conversions, rather than only during start-up
or in response to overload. In an IADC, the reset switches discharge or reset all memory
elements (capacitors in the modulator, storage registers in the decimation filter). This
changes the character of the ADC from a continuously running converter to an intermit-
tently operated one. This feature allows easy multiplexing, and also the use of sleep mode
to reduce power dissipation, and allows an easy speed–power trade-off. Figure 12.2 illus-
trates the region of typical applications for IADCs as compared with those of other ADC
schemes.

12.2 Analysis and Design of Single-Stage IADCs

Figure 12.3 illustrates a third-order CIFF ADC, converted into an IADC by the addition
of the switches that reset the integrators after every M clock periods. Note that the circuit
uses a unity-gain feedforward path connecting the ADC input to the quantizer input. This
connection has two beneficial effects. As discussed for ADCs, the loop-filter only
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needs to process the quantization error. This allows relaxed linearity specifications for the
amplifiers. Also the input signal (almost) immediately appears at the output of the loop. As
will be shown later, this improves the SNR of the converter, since the digital filter following
the loop assigns a decreasing scale factor to the loop output samples [k].

Time-domain analysis shows that output signal of the third integrator after the Mth
clock period is

x3[M] bc1c2
2

1

1

1

0
(u[k] [k] Vref ) (12.1)

Here [k] is the digital output after the kth clock period, and Vref the reference voltage of
the feedback DAC. Assuming that u is held constant during all M clock periods, we have

M (M 1)(M 2)
6

u

Vref 2

1

1

1

0
[k]

1
bc1c2

x3[M]
Vref

(12.2)

For a stable ADC, x3 Vref can be obtained. Then, the term on the RHS of (12.2) is
much smaller than those on the LHS, and hence the approximation

u

Vref
G

2

1

1

1

0
[k] (12.3)

where
G

6
M (M 1)(M 2)

6
M3 (12.4)

can be used to find an estimate of u. The estimation error corresponds to an LSB voltage

VLSB G
2

bc1c2
Vref (12.5)

The equivalent number of bits of the ADC is then given by ENOB log2(2Vref VLSB).
Equations (12.2–12.5) suggest the following design process for the third-order IADC:

a. Design a third-order low-distortion CIFF ADC using the Delta-Sigma toolbox.
Carry out dynamic-range scaling to prevent overloading the integrators and the quan-
tizer. This gives the values of branch factors a1, a2, and a3, as well as the integrator
gain factors b, c1, and c2.

b. Use (12.4) and (12.5) to find the lowest value of M needed to meet the SQNR speci-
fications. As discussed in earlier chapters, it is advisable to make SQNR SNRspec
because, for power efficiency, most of the noise budget should be assigned to the
thermal noise.

c. As (12.3) suggests, the digital estimate of u Vref can be obtained by using three digital
accumulators and a multiplier.

Note that the resolution of the internal quantizer appears only indirectly in the error
formula (12.5), through the bc1c2 product. Since this factor, after dynamic-range scaling,
is inversely proportional to the step size of the quantizer, higher quantizer resolution gives
smaller VLSB, as expected.
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An alternative analysis can be based on z-domain arguments. Since the loop output is

V (z) STF(z) U NTF(z) E(z) (12.6)

choosing the transfer function of the digital decimation filter as H (z) 1 NTF(z) yields
the overall digital output W (z):

W (z) H (z) V (z) STF(z)
U

NTF(z)
E(z) (12.7)

For the case of a low-distortion ADC with a “maximally flat” noise transfer func-
tion NTF(z) (1 z 1)3, the transfer function H (z) can be realized by three cascaded
accumulators. To keep the dc gain of H equal to 1, the scale factor G, defined in (12.4),
must also be included. This leads to

[M]
u

Vref
G e[M] (12.8)

Thus, the final output [M] of the digital filter gives the estimate of u Vref . The error of the
estimation is G e[M]. Here e[M] is the last value of the quantization error of the internal
quantizer. It satisfies e[M] 2, where is the quantizer step size. Unlike (12.5), the
error formula (12.8) allows finding the oversampling ratio M even before the block-level
design of the ADC loop is completed.

12.3 Digital Filter Design for Single-Stage IADCs

The analog loop design process for a single-stage IADC is essentially the same as for a
single-stage ADC. However, the design of the decimation filter is different – in fact, it
is usually much simpler. It was shown in Section 12.2 that for the third-order IADC the
digital estimate of u Vref can be obtained from the triple summation of the digital output of
the quantizer, multiplied by G 6 [M (M 1)(M 2)]. In the general case of an Lth-order
IADC, L accumulators are needed, and the scale factor is G L! [M (M 1)(M 2)(M

L 1)]. For improved dynamic range, in the third-order IADC the scaler can be split
into factors 1 M , 2 (M 1), and 3 (M 2), and each factor assigned to an accumulator.
To avoid the costly division required by these factors, it is also advantageous to choose
M 2 , where n is an integer, and to use the approximation

1
M k

1
2 3

M
k 1 2 (12.9)

Here, the multiplication by 1 M 2 requires only shifting the binary point by n places,
so all factors can be easily and cheaply found. If not needed, the higher-order terms (k M)2

and (k M)3 may be neglected in the approximation.

An alternative realization of the decimation filter can be based on the finite-length con-
volution of the output sequence [k] of the loop with the M values of the finite impulse
response h[k] of the filter [8]. The impulse response h[k] is the inverse z-transform
of the transfer function H (z) of the digital filter. It can easily be obtained by applying the
impulse sequence 1 0 0 to the known structure (here, a cascade of accumulators) of
the filter. For L 1, this process gives h[k] 1 for all M values k 0 1 2 (M 1).
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For L 2, the result is h[k] k 1; for L 3, h[k] (k 1)(k 2) 2. The scale factor
needed to make the sum of all elements h[k] equal to one (and thus H (1) 1) must also
be included.

A more sophisticated design technique for the digital filter that can minimize the
weighted sum of the thermal and quantization noises is described in [8]. It assumes that
the thermal noise is white with mean-square value k T C . Here k is the Boltzmann
constant, T is the temperature in Kelvin, and is a scale factor determined by the circuitry
of the input branch [1]. Typically, 5. Then, it can be shown [8] that the mean-square
value of the output thermal noise is given by

P
k T

C
h S Sh (12.10)

Here h is an M-element column vector whose kth element is h[k], the kth sample of the
impulse response of the decimation filter. S is an M M lower triangular matrix

S

s[0] 0 0 0
s[1] s[0] 0 0

s[M 1] s[M 2] s[M 3] s[0]

(12.11)

where s[k] is the kth sample of the impulse response of the signal path from the input
to the output of the loop. For the low-distortion loop, S becomes the unit matrix, and
hence P ( k T C ) h 2. To minimize the thermal noise, h[k] should be chosen so as
minimize P , subject to the condition that the dc gain of the digital filter should be one.
This condition translates into

e h 1 (12.12)

where e [1 1 1 1] is an M-element column vector. For the low-distortion case, this
gives the minimum P for h[k] 1 M for k 0 1 (M 1). Thus, all tap weights
of the optimized decimation filter are the same for thermal noise minimization if the low-
distortion architecture is used.

The estimation of the power of the contribution of the quantization error in the output
is similar to the one performed above for the thermal noise. It will be assumed that the
samples e[k] behave as a zero-mean noise with uncorrelated samples, and that they have
a mean-square value of 2 12, where is the step size of the quantizer. (Note that this
assumption rests on conditions which ensure their randomness, and may necessitate the use
of a dither signal in the loop.) Let n[k] be the impulse response of the quantization noise
transfer function, from the quantizer to the output of the loop. It is the inverse transform
of the noise transfer function NTF(z) of the loop, windowed by the reset pulse. Then,
defining the M M matrix N generated from the n[k] samples the same way as S was
generated from the s[k], the power P of the output quantization noise can be expressed in
the form

P
2

12
h N N h (12.13)

To minimize the output quantization noise power, P given by (12.13) needs to be
minimized, subject to constraint (12.12). This task can be performed analytically, using
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the Lagrange multiplication method [8]. The resulting optimum impulse response of the
decimation filter is given by

hopt
Re

e Re
(12.14)

where R [N N] 1 and e is the unit-element vector defined above. Due to the structure of
N , the matrix N N cannot be singular, and thus R always exists. Alternatively, available
software (e.g., the MATLAB function quadprog) can be used to find h . It can be
predicted that for an Lth-order loop the first L elements of hopt will be zero or very small
because the last L output samples of the loop will contain quantization error samples that
will not be canceled by subsequent samples. Hence, these must have small weight factors
in the optimum solution.

The optimization of the digital filter transfer function H (z) for both quantization and
thermal noises is based on minimizing the sum of P and P subject to the prescribed dc
gain of the filter. Specifying as before H (1) 1, and defining the matrix

O
k T

C
S S

2

12
N N (12.15)

our task becomes finding h so as to achieve

min(P P ) min(h Oh) (12.16)

subject to e h 1. For this general case, the process described for the minimization of P

remains applicable, and h is still given by (12.14), but now R [O O] 1 holds, where
O is given by (12.15). The optimum impulse response h[k] of the digital filter will now
be a compromise between the ones applicable in the extreme cases discussed above. As
an example, the MATLABTM code fragment below follows the example of [8] to yield the
responses shown in Figure 12.4.
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Figure 12.4 Optimal impulse responses of the digital filter of a third-order IADC.

%% Modulator description from [8]
M = 230; % Decimation factor
Cin = 2e-12; % Input capacitance
Vref = 1; % Reference voltage
Vfs = sqrt(2); % Full-scale input voltage
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nlev = 5; % Number of quantization levels
% Coefficients for low-distortion CIFF topology
a = [1.0398 0.4870 0.0967];
g = 0;
b = [1 0 0 1];
c = [1 1];

%% Calculation of optimal impulse response
ABCD = stuffABCD(a,g,b,c,’CIFF’);
[ntf stf] = calculateTF(ABCD);
n = impulse(ntf,M); s = impulse(stf,M);
N = zeros(M,M); S = zeros(M,M);
for i = 1:M

N(i:M+1:M*(M+1-i)) = n(i);
S(i:M+1:M*(M+1-i)) = s(i);

end
delta = 2*Vref/(nlev-1);
gamma = 5;
k = 1.38e-23; % Boltzmann constant
T = 300;
t2 = gamma*k*T/Cin;
q2 = delta^2/6; % Assumes 1 LSB of dither
O = t2*(S’*S) + q2*(N’*N);
R = inv(O’*O);
e = ones(M,1);
% Optimal impulse response
h_opt = R*e / (e’*R*e);
% Optimal impulse response for quantiztion noise only
h_q = inv(N’*N)*S*e;
h_q = h_q/sum(h_q);
% Optimal impulse response for thermal noise only
h_t = e’/M;

The curves show the optimum h[k] responses for minimizing the thermal noise
power P (dashed line), the quantization noise power P (dotted curve), and the total output
noise (continuous curve). Note that the areas under the three curves are the same, but the
individual properties differ, as discussed above. As expected, the response for minimum
thermal output noise is constant, and the response for minimum quantization output noise
is similar to a quadratic parabola. For optimum total noise, the curve initially follows the
quantization noise response, since this determines the noise introduced at the end of the
conversion. After that, it approaches the thermal noise response.

The decimation filter DF performs the convolution of the loop output data [k]
with the FIR impulse response h[k ], discussed above. It needs to be implemented in an
economical way. Since the output of the DF is down-sampled by M , only the last result
of the convolution needs to be calculated. The M coefficients h[k], k 0 1 (M 1),
can be stored, and a simple multiply-accumulate (MAC) stage may be used to carry out
the calculation of . Since the IADC quantizer usually has low resolution, the loop output
will be integers with small magnitude, making the MAC operations trivial.

In some applications, the decimation filter needs to suppress one or more interferers
(e.g., line noise). This requires transmission zeros at the frequency of the interferer and
its harmonics. The simple cascade-of-integrators decimation filter does not provide any
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notches other than those at multiples of f M . In this case, the design may be based
on the sinc function, which can provide transmission zeros at arbitrary frequencies [6].
Figure 12.11 in Section 12.5.1 shows an example response from that work.

12.4 Multiple-Stage IADCs and Extended Counting ADCs

As was the case for ADCs, the SQNR of the IADC may be improved by a variety
of changes: increasing the order L, or the oversampling ratio M , or the resolution of the
internal quantizer, all raise the SQNR. However, these measures are all limited by practical
effects. For wideband ADCs, the OSR M may be limited to a low value by the bandwidth
of the amplifiers, or by the allowable power dissipation. For low oversampling ratios, the
SQNR cannot be significantly improved by raising the order of the loop-filter, and high
SQNR may only be obtained by using impractically high quantizer resolution.

The problems presented by low OSR may be solved by utilizing the multi-stage
(MASH) architecture, discussed in Chapter 5. Here, the quantization error e1 of the first
stage is obtained in analog form, and canceled by the output of the second stage. Simi-
larly, the error e2 of the second stage can be canceled by the output of the third stage,and
so on. The digital outputs of all stages are then combined using error-canceling filters
H1 H2 . Thus, high-order noise shaping may be obtained, while using only low-order
individual loops. In addition, if the first loop contains a multi-bit quantizer, the error e1
will be smaller than the full-scale voltage of the circuitry. Then e1 may be amplified by
a gain A 1 before entering it into the second stage, and an attenuation 1 A can also be
applied to the second-stage output, which further reduces the final error.

While MASH was developed originally for DACs and ADCs, it is applicable to
IADCs as well. Reference [3] describes a two-stage MASH IADC, where the second stage
operates all the time, from the second clock period until period (M 1). Many IADC stages
may also be cascaded; [7] describes a 12-bit IADC containing eight stages, and operating
at an oversampling ratio of only three!

An economical MASH IADC can be obtained by recalling from (12.8) that the total
conversion error of the first loop after digital filtering is given by the scaled last quantization
error e[M] generated in the loop. In general, e[M] needs to be obtained by subtracting the
input of the first-stage quantizer from its output. However, for the low-distortion structure
with a maximally flat NTF(z), (12.2) shows that e[M] can be found simply from the output
x3[M] of the last integrator in the first loop. Hence, an efficient MASH IADC can use a
second stage which is inactive until the clock period (M 1), and then it converts and
scales x3[M] while the output of the first stage is processed by the decimation filter. This
second stage will thus produce the NLSB least significant bits of the overall output word.
The second stage may be realized by a Nyquist-rate ADC (e.g., a successive-approximation
ADC), and the operation can be fully pipelined if NLSB (M 1). Multi-stage IADCs
based on the principle described in this paragraph [9],[12] are often called extended-range

or extended-counting ADCs. As an example, Figure 12.5 shows the block diagram of the
extended-counting ADC described in [12]. It used a low-distortion second-order IADC
as the first stage, and a SAR ADC as the second stage. It achieved SNDR 86 dB in a
0.5-MHz bandwidth.
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Figure 12.5 A 2-0 extended-counting ADC [12].

12.5 IADC Design Examples

12.5.1 Third-Order Single-Bit IADC

As an example for the design of a single-stage IADC, the 22-bit data converter described
in [6] will be discussed. The block diagram of the noise-shaping loop was shown earlier
in Figure 12.3; the switched-capacitor circuit implementing it is illustrated in Figure 12.6.
In order to avoid dynamic as well as static nonideal effects introduced by a multi-bit DAC,
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Figure 12.6 Single-ended switched-capacitor schematic of the system of Figure 12.3 [6].

single-bit quantization was used. The coefficients chosen were a [1 4 0 99 0 47], b

0 5674, and c [0 5126 0 3171].

Figure 12.7 illustrates the mean square of the quantization noise as a function of the
dc input signal u normalized to Vref for M 1024. As expected, when u approaches Vref
the quantizer overloads, and the noise becomes large. However, there are no idle tones,
since the reset operations prevent the occurrence of periodic signals with long periods, and
the digital filter suppresses high-frequency tones.

In order to allow large input signals close to u Vref , the input stage includes an at-
tenuator with a gain of 2/3. To make this gain factor accurate despite element mismatches,
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Figure 12.7 Quantization noise power as a function of u Vref for M 1024.

a dynamic element matching scheme was used. The circuit is shown in Figure 12.8. In
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Figure 12.8 The rotating capacitor input circuit. The dotted frames contain replicas of the circuit
containing C1

a single clock period all six switched input capacitors deliver a charge proportional to the
DAC output V , but only four of them deliver the C1 u charge. This is equivalent to a
scale factor of 2 3 for u. By rotating the roles of the capacitors, the mismatch errors are
converted into an out-of-band periodic noise.

To cancel offset, the device used an enhanced form of chopping, named fractal se-

quencing. Note that simple chopping is inadequate in the cascade-of-integrators circuit
used here. To illustrate this, assume that a 1-mV offset exists at the input of the first in-
tegrator, and assume unity gain factors for all three integrator stages. Then the output
sequence of the first integrator (in mV) will be 1 1 1 1 ; the second stage output
is 1 0 1 0 , and the third one 1 1 2 2 3 3 – diverging with time. In fractal se-
quencing, the control signal INV ensures that the input signal is always integrated with the
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same sign, while the input offset is toggled in such a way that after M oversampled cycles
the offset at the output of the last integrator is canceled.

The sequence of simple chopping is S1 ( ). Here, a denotes
no inversion of the signal, while denotes inversion, and the parentheses indicate that this
pattern repeats indefinitely. The method of creating the fractal sequences S is based on the
recursion relation S 1 [S S ]. Thus, from the simple chopping sequence S1 ( ),
higher-order sequences can be obtained as shown in (12.17) below. The desired sequence
for the IADC is S , where L is the number of the cascaded integrators. L 3 in this
device.

S1 ( )
S2 [S1 S1] ( )

S 1 [S S ] (12.17)
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Figure 12.9 Offset compensation using fractal sequencing.

Figure 12.9 shows the input integrator using fractal sequencing. The switches INV
and INV are operated by the S3 fractal sequence. To maintain a consistent integration
polarity, 1 and 2 when INV is low, but 2 and 1 when INV is
high. Note that the chopping frequency used in the fractal sequence may be a subharmonic
of the IADC clock. Figure 12.10 shows the normalized integrator output voltages after
fractal sequencing using f f 64

The digital filter used a modified sinc transfer function

H (z)
4

1

1 z

M (1 z 1)
(12.18)

where M 512 512 512 26 512 26 , which provided wide notches around the
line frequency (Figure 12.11). These notches suppress line-frequency noise even in the
presence of clock-frequency or line-frequency variations.
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12.5.2 Two-Step IADC
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Figure 12.12 Block diagram of the two-step IADC.

Our second example is a two-stage two-step IADC. This incremental ADC was pro-
posed for low-bandwidth, micro-power sensor interface circuits. The two-step operation
extends the order of a conventional IADC from N to (2N 1), while requiring only the
circuitry of an N th-order IADC. Figure 12.12 shows the block diagrams of the circuit dur-
ing the two steps. In step 1, the circuit is a second-order feedforward IADC for M1 clock
periods. At the end of this step, the second integrator holds x2[M1], which is the analog
form of the quantization error. In step 2, the circuit is reconfigured. The second integrator
now acts as a S/H input stage, and the rest of the circuit becomes a first-order converter
IADC1, which converts x2[M1] into digital form.

Figure 12.13 illustrates a simplified switched-capacitor implementation of the circuit
during step 1. For a specified total number of clock periods M M1 M2, it is easy
to show that the optimum allocation for quantization noise is M1 (2 3)M and M2
(1 3)M . In the implemented IADC, M 192 was used, and hence M1 128 and M2 64.

The implemented third-order IADC achieved a measured dynamic range of 99.8 dB
and an SNDR of 91 dB for a 2.2-Vpp input and 250-Hz bandwidth. Fabricated in 65-nm
CMOS, the IADC’s core area was 0.2 mm2, and consumed only 10.7 W. The FOMs were
0.76 pJ/conversion step and 173.5 dB, both among the best reported results.

Figure 12.14 compares the SQNR vs. OSR characteristics of the implemented two-
step IADC2 with a single-step IADC2 and an IADC3. For the same total number of clock
periods, the two-step circuit is nearly as accurate as the IADC3, but needs one less opamp.

Minimize 1 2
1 1 2 subject to 1 2 .
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In general, the two-step operation allows the approximate realization of a (2N 1)th-order
IADC with only N amplifiers.
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Figure 12.15 SQNR versus opamp gain for a two-step IADC.

As Figure 12.15 demonstrates, the operation is not overly sensitive to the dc gain of
the amplifiers used. Last, Figure 12.16 shows the SNR and SNDR as a function of the
amplitude of the input signal.
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Figure 12.16 SNR and SNDR versus input signal amplitude for the two-step IADC.

12.6 Conclusions

By periodically resetting all memory elements of a delta-sigma ADC, it can be converted
into a Nyquist-rate converter. The result is the incremental A/D converter (IADC). The
number of clock periods between resets determine the oversampling ratio. Compared to
the delta-sigma ADC, the IADC provides lower SNR, but it is easy to multiplex, has lower
latency, and needs a much simpler digital filter. It is also less vulnerable to idle tones
and instability. For these reasons, the IADC is often the best choice for sensor interface
applications.

As with the delta-sigma ADC, the IADC can be realized in multi-stage and multi-step
structures, which can provide highly efficient realizations for micro-power interfaces.
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CHAPTER 13

DELTA-SIGMA DACS

Up to this point, the concepts of oversampling and noise-shaping were only applied to
ADCs, and not to digital-to-analog converters (DACs). In fact, delta-sigma DACs are
commercially as important as their ADC counterparts, if not more so, and their implemen-
tation is often just as difficult as the implementation of a ADC. This chapter will be
devoted to the specific issues involved in the design of delta-sigma DACs.

The motivation to use noise-shaping in D-to-A conversion is the same as in A-to-D
conversion. For a DAC with a 3-V full-scale and an 18-bit resolution, the LSB voltage is
only about 12 V. Hence, the permissible deviation of the DAC output levels from their
ideal values is of the order of 12 V, which cannot be achieved in a conventional DAC
without expensive trimming and/or extremely long conversion time. Therefore, the trade-
off earlier discussed in connection with delta-sigma ADCs, wherein oversampling and
additional digital hardware are applied to allow the use of robust and simple analog cir-
cuitry, is attractive for high-accuracy DACs as well. The actual structures implementing
this trade-off will be discussed next.

13.1 System Architectures for Delta-Sigma DACs

Figure 13.1 illustrates the basic system diagram of the DAC. As indicated, the front end
(containing a digital interpolation filter and a noise-shaping loop) contains digital circuitry,
while the output stages (the internal DAC and the reconstruction filter) are analog.
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The spectra of the signals processed by the system are shown in Figure 13.2. The
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Figure 13.2 Signal and noise spectra in a DAC.

input signal u0[n] is a multi-bit data stream with a word length N0 (typically, 15–24 bits)
sampled near the Nyquist rate f . Its spectrum is illustrated in Figure 13.2(a).

The interpolation filter (IF) has two roles:

to raise the sampling frequency to OSR N and thereby allow subsequent noise-
shaping, and

to suppress the spectral replicas centered at f 2 f (OSR 1) f .

The purpose of this sideband suppression is to reduce digitally the out-of-band power of
the input of the noise-shaping loop without affecting the baseband signal spectrum. This
improves the dynamic range of the noise-shaping loop, since larger signals can thus be
accommodated. Also the task of the analog output filter is eased, since it needs to suppress
less out-of-band noise. Thus, the filter’s linearity requirements can be somewhat more
relaxed due to the reduced amount of intermodulated out-of-band noise folding down into
the signal band. The suppression need not be very accurate, since the truncation error
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generated in the noise-shaping loop will introduce unwanted noise in the same frequency
range anyway. The ideal spectrum of the IF output signal is shown in Figure 13.2(b). The
word length of this signal can remain about the same as that of the input data u0[n].

The noise-shaping loop reduces the word length of its input signal to a few (1–6) bits.
If a single-bit NL output is used, then (as discussed in Chapter 2 for the internal DAC in
a ADC) the linearity requirements for the DAC following the NL can be relaxed. If
the output data are multi-bit, then the techniques discussed in Chapter 6 may be utilized
to filter out or cancel the unavoidable DAC nonlinearity errors, and thus to achieve linear
conversion. (The pros and cons of using multi-bit DAC loops will be discussed in Sec-
tion 13.3). In any case, the NL output must contain a faithful reproduction of the input
signal u0[n] in the baseband, but it will also include the filtered truncation noise caused
by the reduction of the word length in the loop. The spectrum of the NL output signal is
schematically illustrated in Figure 13.2(c).

The next block in the system is the embedded DAC. As discussed above, it may
have a single-bit input, in which case its output will be a two-level analog signal. The
structure of such a 1-bit DAC will be very simple, and its linearity will be theoretically
perfect (although some practical precautions need to be observed to achieve good linearity).
However, the high slew rate of the single-bit DAC output signal, and the large amount of
out-of-band noise power it contains, make the design of the subsequent analog smoothing
filter (LPF) a difficult task.

By contrast, for a multi-bit DAC, additional circuitry is required for the filtering or
cancellation of the DAC nonlinearity error, which results in a more complex DAC. How-
ever, the reduced slew rate and out-of-band noise power of the DAC output signal allows
reduced performance requirements, and hence simpler implementation, for the smoothing
filter. Usually, the overall trade-off in complexity, chip area and power dissipation favors
the multi-bit structure.

Ideally, the DAC will reproduce the digital signal at its input in an analog form without
any distortion. Hence, the output spectrum of the DAC will be, except for a constant
factor corresponding to the reference voltage or current of the DAC (and for a sinc( f T )
frequency-dependent factor corresponding to the frequency response of a zero-order hold),
the same as that shown in Figure 13.2(c) for the output signal of the noise-shaping loop.

Finally, the task of the analog smoothing or reconstruction filter is to suppress most
of the out-of-band noise power contained in its input signal. Hence, the ideal spectrum
of its output signal should be as shown in Figure 13.2(d). As already mentioned, it is
relatively easy to achieve good noise suppression without introducing additional distortion
for a multi-bit DAC output signal, but the task is usually quite difficult for a single-bit
signal. The design of the analog post-filter will be discussed in Section 13.5.2.

13.2 Loop Configurations for Delta-Sigma DACs

As was the case the ADCs, there is also a wide variety of loop architectures available
for the designer of DACs. The function of the loop is similar to that of the noise-
shaping loop of the ADC, namely to reduce the resolution of the input signal to a

For an analog signal, the resolution can be regarded as infinite.
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few bits without significantly affecting its in-band spectrum in the process. Since the re-
duced word length means that quantization or truncation error is introduced, the loop must
suppress the power spectrum of this added noise in the signal band. The only significant
differences between ADC and DAC loops are as follows. In the DAC loop, all signals are
digital, and hence, no internal data conversion is required. For the same reason, the signal
processing in the loop can be made highly accurate, and we need not take any analog im-
perfections into account when predicting the actual behavior of the loop. As we will see,
this permits the use of some efficient configurations that are impractical for ADC loops.
Some typical loop configurations will be discussed next.

13.2.1 Single-Stage Delta-Sigma Loops

All loop architectures discussed for ADCs in Section 4.7 remain applicable for delta-sigma
DACs. Thus, the structure containing cascaded integrators with distributed feedback and
input coupling (CIFB), illustrated in Figure 4.26; the circuit using cascaded resonators
with distributed feedback (CRFB), shown in Figure 4.27; as well as the structures con-
taining cascaded integrators or resonators with feedforward coupling (CIFF), shown in
Figures 4.28 and 4.30, respectively, can also be used in delta-sigma DAC loops. Of course,
the component blocks are now accumulators rather than integrators, and they are imple-
mented by digital adders and multipliers, rather than opamps, capacitors and switches as
in the ADC loops.

The designer is still faced with some of the same problems (e.g., stability issues) as
were encountered for analog loops, and also with some new ones. In finding the proper
configuration and order for the loop, and calculating the coefficients needed, the noise-
shaping and signal transfer specifications must be satisfied, and stability needs to be ascer-
tained under all anticipated conditions. Also, the conditions for optimum dynamic range
must be met, and the over- or underflow of any block avoided. Finally, the word lengths of
all coefficients and operations should be carefully determined so that, on the one hand, the
required accuracy in signal transfer and noise suppression is maintained, and, on the other
hand, the complexity of the circuit is minimized subject to these accuracy conditions.

Qualitatively, the sensitivity considerations discussed for ADC loops remain valid for
DAC loops, except that the errors generated here are due to coefficient truncations and to
the round-off errors of the digital operations (additions and multiplications), rather than
element-matching errors and finite opamp-gain effects. Thus, the coefficient and round-off
errors must be kept small in all signal paths connecting to the input node, but they may
increase progressively as the signal propagates towards the output of the loop. Hence, the
word length needed may vary considerably with the location of the block in the loop.

Hardware can also be saved by choosing simple coefficients that contain only a few
terms, each term an integer power of 2. This may alter the signal and noise transfer func-
tions slightly, but the effects on the NTF and STF are usually small and, in the case of
the STF, can often be corrected by the blocks preceding or following the loop. The signal
transfer function of the low-distortion architecture discussed in Chapter 4 tends to be less
susceptible to coefficient truncation than that of competing architectures.
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13.2.2 The Error-Feedback Structure

A configuration that is not practical for ADC loops, but is highly efficient for DACs, is
illustrated in Figure 13.3 for a 1-bit loop. Here, rather than feeding back the MSB retained

1-bit
truncator

H

u

e

1

Figure 13.3 Error-feedback structure.

in the output signal as was done in the delta-sigma loop discussed in Section 13.2.1, the
discarded LSBs (representing the truncation error e[n]) are filtered and fed back to the
input. The loop-filter H used to filter e[n] is now located in the feedback path.

In an ADC loop, this structure would be overly sensitive to the imperfections of the
analog loop-filter and of the analog subtraction needed to generate e[n], since the errors
generated in either enter the input terminal directly. Hence, this architecture is never used
in an ADC. In a digital realization, however, if sufficient accuracy is used in the digital
implementation of the H filter, the circuit will perform well. Linear analysis shows that
the output is given by

V (z) U (z) [1 H (z)]E(z) (13.1)

Hence, the STF is 1, and the NTF equals [1 H (z)].

u

z 1
2

z 1

k m 1

e

k m 1

Figure 13.4 Second-order error-feedback noise-shaping loop.

For low-order loops, the error-feedback loop can usually be very simply realized. For
a first-order loop, NTF 1 z 1, and hence H (z) z 1, meaning, it is simply a delay.
For a second-order loop with a double zero of the NTF at dc,

H (z) 1 (1 z 1)2 z 1(2 z 1) (13.2)

Thus, the loop can be realized from two delays, a shift in the binary point to implement the
factor 2, and two adders (Figure 13.4).

Higher-order error-feedback loops can, of course, also readily be designed, subject
to stability considerations. As in the delta-sigma type loop, instability causes the input
signal [n] of the quantizer (here, the truncator) to grow beyond the operating range of the
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Figure 13.5 Error-feedback with limiter.

digital logic. Depending on the arithmetic used, this may just cause the saturation of [n]
at its largest possible value, or it may cause a wraparound, where the output [n] suddenly
decreases with increasing [n] at overflow. While saturation is usually acceptable, wrap-
around causes large errors, and hence, it must be prevented, e.g., by including a digital
limiter in the loop (Figure 13.5) at the input of the truncator [1]. The limiter should saturate
before overflow can occur.

13.2.3 Cascade (MASH) Structures

To achieve high-order noise-shaping without the stability problems inherent in the de-
sign of higher-order loops, cascade structures may be used for DACs as well as for

ADCs [2]. (Cascaded DAC stages were, in fact, proposed before ADC ones.) Fig-
ure 13.6 illustrates the architecture of a two-stage cascade DAC. In a typical structure,
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Figure 13.6 Cascade structure for a second-order noise-shaping loop.

both stages may contain second-order loop-filters, resulting in a fourth-order noise-shaping
overall, while preserving the robust stability properties of second-order loops.

A design issue, one that did not occur for MASH ADCs but appears for cascade
DACs, concerns the optimum location of the internal DACs in the structure. Assume, at
first, that all signal processing in the structure of Figure 13.6 is performed digitally. As
explained in the discussions of Section 5.2, the post-filter H1 usually replicates the signal
transfer function STF2 of the second stage. Often, STF2 is simply a single or multiple
delay, and hence, H1 can easily be implemented digitally without increasing the word
length n1 of the first stage output 1. By contrast, H2 usually reproduces the noise transfer
function of the first stage, and hence, if implemented digitally, it increases the word length
n2 of 2. Adding H1 V1 and H2 V2 digitally will increase the output word length even
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further. Hence, such a structure will produce a multi-bit output [n], which then needs to
be accurately converted in a multi-bit, and hence complex, internal DAC.

An alternative is to use a separate DAC in each stage, and combine their outputs using
analog circuitry, as illustrated schematically in Figure 13.7. This allows the use of less
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2

k
DAC1

D
AC
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Figure 13.7 A cascade DAC using analog recombination.

complicated DACs. A mismatch between the gains of the two paths caused by analog
errors will introduce leakage of the first-stage truncation error, but the mismatch will not
affect the linearity of the signal conversion, which is limited only by the linearity of the
first-stage DAC.

It is also possible to place DAC2 ahead of the H2 filter, which then must be realized
by analog circuitry. This has two advantages: first, the resolution of DAC2 can be reduced,
since it only needs to convert V2, not H2 V2, which has longer words. In fact, for n1 n2
1, both DACs can be single-bit ones. For multi-bit DACs, H2 is now going to shape the
noise introduced by the inherent nonlinearity of DAC2, along with the truncation noise of
the second stage. A disadvantage of this modified scheme is that the analog implementation
of H2 cannot reproduce the digital NTF1 as accurately as a digital filter could. (Note,
however, that any zeros of H2 at dc can be very accurately realized in an analog circuit, by
having series capacitors in the signal path.)

Another option is to split the H2 block into a digital stage preceding DAC2, and an
analog one following it. This way, the larger truncation noise receives full shaping by
NTF2 and H2, and the much smaller noise caused by DAC2 errors will be shaped only
by the analog part of H2. This scheme will realize the required replica of NTF1 more
accurately than a fully analog H2 can.

13.3 Delta-Sigma DACs Using Multi-Bit Internal DACs

The parameters of the digital noise-shaping loops used in DACs are much more ac-
curately controlled than those of the analog loops required in ADCs, and some of
the basic arguments for using multi-bit quantization in ADCs (such as the ones based on
opamp slew rate, power dissipation, nonlinearity, clock jitter, etc.) are not valid for DAC
loops. Nevertheless, the stability considerations presented in Section 4.1 remain valid, and
an additional powerful reason for multi-bit operation emerges: the relaxed requirements
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on the analog smoothing filter LPF following the internal DAC. For a single-bit DAC, the
input signal of this filter is a two-level fast-slewing analog signal (usually voltage), with
most of its power contained in the large high-frequency quantization noise. This fast sig-
nal needs to be filtered by the lowpass filter so that almost all its high-frequency noise is
removed. This must be accomplished without distorting the signal or even the out-of-band
noise. (Distorting the noise will cause the folding down of the large noise spectrum from
the region around f 2 into the signal band.) In addition, due to the steep slopes of the
two-level analog signal, any clock jitter is translated into substantial amplitude noise at the
output of the filter. In conclusion, the analog problems due to single-bit truncation which
appeared in the noise-shaping loop in ADCs do not disappear in DACs; they are
just shifted to the analog post-filter!

In earlier single-bit implementations [3], to overcome these difficulties, the smoothing
filter was realized as a cascade combination of a high-order switched-capacitor (SC) filter,
an SC buffer stage, and a continuous-time post filter. It required a considerable chip area
and dc power. The motivation for paying such a high price for the one-bit system was to
avoid the inherent nonlinearities of a multi-bit internal DAC.

In recent years, various techniques (dual quantization, mismatch-error shaping, and
digital correction) have become available for reducing the DAC nonlinearity effects, and
hence multi-bit DAC structures are being favored over single-bit ones. These DAC lin-
earization methods are similar to their counterparts used in ADCs, which were discussed
in Chapter 6. In the next section, these schemes will be examined.

13.3.1 Dual-Truncation DAC Structures

The general principle of dual-truncation DACs is similar to that of dual-truncation ADCs:
use single-bit truncation in the D/A conversion of the signal, and use multi-bit truncation
where only the truncation errors are converted. A simple implementation, which is similar
to the Leslie–Singh structure of Section 4.5.1, is shown in Figure 13.8 [4]. As shown,
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Figure 13.8 A dual-truncation DAC system.

the signal u[n] is reduced to a single-bit data stream in a noise-shaping loop. This can
be converted linearly in a 1-bit DAC. The large truncation error e1 is truncated to M bits
(M 1), and converted in an M-bit internal DAC. It is then filtered and added to the output
of the 1-bit DAC to cancel e1[n]. The spectrum of the nonlinearity error d of the M-bit
DAC is shaped by the analog filter H2(z), which duplicates the NTF of the 1-bit loop and
suppresses its in-band power.
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Figure 13.9 A dual-truncation MASH structure.

A more sophisticated and effective structure, shown in Figure 13.9, uses a noise-
shaping loop in both stages, with 1-bit truncation in the first stage and M-bit truncation in
the second one.
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Figure 13.10 A third-order dual-truncation MASH noise-shaping stage.

Figure 13.10 shows the implementation of a third-order DAC [4] based on this struc-
ture. In the diagram, the switched-capacitor branch containing C1 realizes the 1-bit DAC,
while C2, C3, C4, and their switches perform as the analog filter H2(z). Both loops use
error-feedback; the first loop has a second-order loop filter with a pole at z 0 5 for
improved stability, while the second loop uses a simple first-order filter.

It is also possible to realize a single-stage dual-truncation DAC (Figure 13.11). This
is similar to the Hairapetian ADC structure [5]. The single-bit output is fed to a 1-bit
DAC, and is also fed back to all but the last stage in a cascade of integrators. An M-bit
output is also generated; it is converted in a multi-bit DAC, and also entered into the last
integrator. The input signal in this structure is converted by the 1-bit DAC in a potentially
linear fashion, while the M-bit circuitry is used to cancel the large 1-bit truncation error
in the output [n], and replace it with a much smaller M-bit error. An error cancellation
logic, consisting of the analog filters H4 and H5, carries out this operation. Mismatch
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Figure 13.11 A single-stage dual-truncation D/A loop.

between the gains of these filters will degrade the cancellation of the 1-bit truncation error
and hence the SNR, but will not introduce nonlinear signal distortion.

13.3.2 Multi-bit Delta-Sigma DACs with Mismatch Error Shaping

As mentioned earlier, the mismatch-error-shaping techniques discussed in Chapter 6 (data-
weighted averaging, individual level averaging, vector-based mismatch shaping, tree-
structure element selection) remain applicable to the internal DACs in multi-bit D/A
converters. Again, however, there are new possibilities and trade-offs to consider for

DACs.

In a multi-bit ADC, the number of bits N used in the output is generally limited to
about 4, since for N 5 the internal ADC already needs 32 comparators with associated
circuitry, and hence requires substantial supply power and chip area. For N 2 to 4,
the complexity of the DAC itself, and that of digital circuitry implementing the necessary
mismatch shaping, are both relatively low, and no special schemes are needed to simplify
them.

By contrast, in a multi-bit DAC, no internal ADC is required, and hence, values
of N higher than 4 may be chosen. However, since the complexity of the DAC and its
error-correction circuitry grow exponentially with N , they may then require too much chip
area and bias power. We may use 2 as a complexity index; generally, for N 4, its value
is impractically high. This problem, and its solution, will next be discussed in terms of a
second-order 6-bit delta-sigma DAC.

An obvious solution to having too many bits (here, 6 bits) in the DAC input signal
is to use segmentation, that is, to split the 6-bit input data stream into two 3-bit segments:
an MSB signal and an LSB one. The two segments can then be separately encoded into
thermometer-coded words, scrambled, and converted into analog signals (Figure 13.12).
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Figure 13.12 Segmentation.

The weighted sum of the two analog outputs provides the overall output signal. The
effective complexity index of this system is 2 23 16, which is lower (by a factor of 4)
than that of a direct realization of the 6-bit DAC, which is 26 64.

The problem with this approach is that both the MSB and LSB segments contain
large distortion components, which ideally cancel if the two are recombined exactly, with
the weight factor 8 needed to scale the MSB analog output. However, if this factor is
inaccurate, then the unfiltered quantization noise and distortion components contained in
the MSB and LSB outputs will not cancel perfectly, and this will significantly degrade the
linearity and SNR performance. This degradation will occur even if the scramblers in both
paths use mismatch shaping, since the noise is already contained in the scrambler inputs B
and C, and not generated by the internal DACs.
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Figure 13.13 Noise-shaped segmentation.

A way to overcome this accuracy problem is illustrated in Figure13.13 [6]. An addi-
tional first-order loop is cascaded with the main modulator, and it compresses the word
length of its 6-bit input A into 4 bits. Denoting the NTF of MOD1 by H1, and its quanti-
zation error by E1, the two segmented signals are then the 4-bit output B A H1E1 of
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the first-order loop, and C H1E1, which is the negative of its shaped 3-bit quantization
error. C is generated by subtracting the input A of MOD1 from its output B. Both signals
B and C are next thermometer-coded, scrambled and D/A converted, and then added, using
a scale factor 4 for B to make up for the shift of the binary point when C is thermometer
coded. Ideally, the analog output is therefore B C A, as required. The complexity
index is 24 23 24, which is still much lower than the value 26 64 associated with the
unsegmented system.

In the system of Figure 13.13, both B and C are noise-shaped signals, and hence,
if there is an error in the analog scale factor 4, so that C is not completely canceled, the
resulting output error will be only some additional shaped noise. For sufficiently high
oversampling ratio (e.g. 128), a 1% DAC element matching error will still allow a 110 dB
SNR [6].

DAC
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N M

L LSBs B

M B 1
u

Digital Noise-Shaping Loop

Figure 13.14 A hardware-reduced first-order modulator with dither.

Another segmentation scheme for DACs is illustrated in Figure 13.14 [7]. Here,
the L LSBs of the input data stream are compressed to shorter (B-bit, B L) words by an
error-feedback noise-shaping loop, and fed to a digital adder. The M MSBs, by contrast,
are directly entered into the adder. Since the addition is digital, it can be highly accurate.
For a 6-bit input, the 4 LSBs may be compressed into 2 bits, and combined with the 2
MSBs to result in a 4-bit DAC circuit. For sufficiently large OSR, the accuracy can be
satisfactory. (Note that this system is just a first-order modulator; it does not split the data
into an MSB stream plus a noise-shaped LSB stream like the system of Figure 13.13 does.)

13.3.3 Digital Correction of Multi-Bit Delta-Sigma DACs

L(z) M-bit
truncator

RAM

DAC
M-bit

N

M
u

Figure 13.15 A digitally-corrected M-bit DAC.

As mentioned in Section 6.1, a power-up calibration is readily available for multi-bit
DACs. The block diagram of the calibration scheme is shown in Figure 13.15.
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The RAM stores the digital equivalents of the actual analog outputs of the DAC for
all possible input codes. The feedback loop forces the in-band spectral components of the
RAM output to follow the digital input u[n], and since the inputs of the RAM and the DAC
are the same, the output of the DAC follows that of the RAM. In conclusion, the in-band
part of the DAC output signal will be the analog version of the input signal u[n].
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Figure 13.16 Calibration scheme for digital correction.

As discussed in Section 6.1, the calibration (i.e., the storing of the appropriate num-
bers in the RAM) can be performed at power-up, using an auxiliary 1-bit delta-sigma
ADC (Figure 13.16). In the calibration process, a digital counter produces sequentially
all input codes for the DAC. For an M-bit DAC, the counter will thus count up to 2 .
Each code from the counter is held at the DAC input for at least 2 clock periods, where
N is the required DAC linearity (in bits). The DAC output is converted by the ADC into a
1-bit data stream, whose dc average is linearly related to the DAC output. A digital lowpass
filter recovers this dc value, which is then stored in the RAM at the address given by the
counter output.

Background calibration is also possible. In a classical scheme [9] implemented for a
current-switching DAC, the DAC contains two more unit current sources than necessary
for conversion. One is used as a reference. In each clock period, a new unit source is
selected for calibration, and the reference current is copied into it, while the remaining
sources perform the data conversion. Thus, by selecting the calibrated source in a rotating
pattern, every source can be recalibrated in each 2 clock periods.

Another background calibration scheme for current-mode DACs was described in
[10]. Here, the current sources are measured and adjusted against a reference source, using
an auxiliary DAC and a 1-bit ADC.

A charge-based calibration scheme similar in principle to that of [9], but suitable for
switched-capacitor DACs, was described in [11]. Here, the charges delivered by the unit-
element capacitors are adjusted sequentially, using a variable reference voltage for each
element, until all charges match a fixed reference charge. This scheme also requires extra
unit elements.

13.3.4 Comparison of Single-Bit and Multi-Bit Delta-Sigma DACs

Comparison of single-stage DACs with single-bit or multi-bit internal truncation shows
the following relative advantages of the two schemes:

Single-bit truncation Much simpler internal DAC structure can be used, without the
need for thermometer coding, unit elements and digital mismatch-shaping logic.
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Multi-bit truncation Several advantages can be obtained, including:

a. Simpler digital noise-shaping loop, since more aggressive NTF may be used, and
since the truncation noise is reduced by at least N 1 bits.

b. Less (or no) dithering, since tones are less likely to be generated, and since typically
the amplitude of dithering is about 1/2 LSB, which is smaller in a multi-bit quantizer.

c. Much simpler analog smoothing filter, since the slewing and out-of-band noise in the
DAC output are both reduced. Also, the sensitivity to clock jitter is reduced, due to
the smaller step-size in the DAC output signal.

Generally, the advantages of multi-bit truncation outweigh those of single-bit trunca-
tion, and hence, it is preferable to design DACs with multi-bit internal DACs.

As an illustration, [3] describes a audio DAC using single-bit internal truncation,
while [8] discusses a 5-bit DAC with comparable performance. The 1-bit DAC needed
a 5th-order noise-shaping loop; the 5-bit DAC required only a 3rd-order loop. The 1-bit
DAC used an analog smoothing filter containing a 4th-order switched-capacitor (SC) filter,
followed by an SC buffer stage and a 2nd-order continuous-time active filter. By contrast,
in the 5-bit system, the SC analog filter was effectively merged with the DAC itself, and
required no extra operational amplifiers. However, the mismatch-shaping applied in the
5-bit DAC needed a fairly elaborate digital circuitry.

13.4 Interpolation Filtering for Delta-Sigma DACs

8
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filter

5 order
modulator DAC

1-bit lowpass
Analog

8 f 64 f

filter
u

18-bit input output

Figure 13.17 An 18-bit D/A converter architecture.

Efficient implementation of the digital interpolation filter (IF) preceding the noise-
shaping loop (Figure 13.1) usually requires a multi-stage structure. A typical architecture
and the role of the individual filter stages will next be discussed. We use as an example
the IF of a classical 18-bit audio DAC [3]. The block diagram of the DAC is illustrated in
Figure 13.17 and the structure of the IF in Figure 13.18.

The IF contains three cascaded finite-impulse-response (FIR) filter stages, followed
by a digital sample-and-hold register. (A similar DAC IF was implemented in the more
recent audio DAC discussed in [8].) Figure 13.19 shows the spectra of the signals
appearing at the inputs and outputs of the individual IF stages, as well as the final output
of the DAC.

As explained in Section 13.1, the purpose of the IF is to take advantage of the in-
creased clock frequency, and to suppress all unnecessary replicas of the signal spectrum
occurring between the baseband and f 2. This will improve the dynamic range of the
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noise-shaping loop, and ease the selectivity and linearity requirements of the analog output
filter. As was also mentioned in Section 13.1, the unwanted sidebands need not be totally
erased, since truncation noise will be introduced in their place anyway in the noise-shaping
loop NL.

In principle, it is possible to raise the sampling frequency immediately to OSR f ,
and then to carry out all filtering at this elevated clock rate. However, this would require
all digital circuitry to function at high speed, and it would hence dissipate an unnecessarily
large amount of power. It would also generate more digital activity, and thus more digital
noise than necessary. Therefore, it is preferable to perform the increasing of the clock
frequency and the filtering in parallel steps, with most of the signal processing performed
at a low clock rate.

The first stage of the filter is operated at 2 f (Figure 13.18), and is used to suppress
the odd-order images. Thus, it removes the first replica of the baseband, assumed to extend
approximately from f to 3 f , as well as the third replica between 5 f and 7 f , and so
forth. The operation is illustrated in Figures 13.19(a) and (b), where the first curve shows
the spectrum of the Nyquist-sampled input signal, and the second the desired spectrum of
the first-stage output. Notice that the requirements of this stage are very demanding: it
needs to have a flat passband with extremely small (here, about 0.001 dB) gain variation
in the 0 to f frequency range, and a very sharp cutoff in order to suppress the adjacent
image, which is quite close. In the filter discussed in [3], this stage was realized by a 125-
tap half-band FIR filter. (Half-band filters are FIR structures, which allow every second
tap weight (except the center one) to be zero, and hence are very economical. A half-
band filter can only realize, however, a frequency response which has a skew symmetry
around its midpoint at f 4, as shown in Figure 13.20. Thus, the pass- and stop-band
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Figure 13.20 Frequency response of a half-band filter.

limit frequencies must be symmetrically located, and the ripples must be the same in the
two bands. These restrictions are usually acceptable in the interpolation-by-2 filtering task
performed here.)

The second stage of the IF has a clock frequency of 4 f . Its task is to remove the
images between 3 f and 5 f , 5 f and 7 f , and so on, as shown in Figure 13.19(c). Its
cutoff needs to be much less abrupt than that of the first stage. In the system described
in [3], this task required a 24-tap half-band FIR filter. The third stage, operated at 4 f ,
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is a 4-tap half-band FIR filter. It reduces the first, third, etc. of the remaining images
(Figure 13.19(d)).

Finally, a digital sample and hold operation was implemented by simply raising the
sampling rate to 64 f , and repeating each output sample of the third IF stage 8 times. This
S/H operation introduced a sinc function that had zeros at 8 f , 16 f , 24 f , and so on, thus
contributing slightly to the filtering at no added cost, as illustrated in Figure 13.19(e). The
final OSR is thus 64.

Note that the IF is designed to provide most of its noise suppression just above the
signal band, where the analog filter following the DAC has the most difficulty in removing
noise. In the noise-shaping loop NL following the IF, some truncation noise is added to
the residual out-of-band noise (not shown in Figure 13.19). Ideally, the resulting spectrum
is then accurately reproduced at the DAC output, and finally all noise is removed by the
analog LPF, giving the output spectrum illustrated in Figure 13.19(f). The word length
used for data in the IF is 18 bits. 19-bit accuracy is used for the constant coefficients. The
overall truncation noise is 107 dB below the full-scale sine-wave signal power, consistent
with an approximately 18-bit performance.

Note that FIR filters are commonly used in systems because these filters can have
perfectly flat group delay, and also because the required hardware can be clocked at the
lower of the input and output data rates. IIR filters are less common, but they have the
advantage of being able to provide greater stopband attenuation with a given hardware
complexity.

13.5 Analog Post-Filters for Delta-Sigma DACs

As discussed earlier, difficult analog circuit problems may arise in the design of the post-
filter of the DAC. This filter, as illustrated in Figure 13.19, needs to remove all out-of-
band portions of the output signal of the internal DAC, and it must not introduce apprecia-
ble nonlinear distortion into the signal while doing so. This task is particularly difficult for
single-bit DACs, where a large two-level analog signal enters the post-filter.

Depending on the application, it may also be necessary for the post-filter to provide
exactly or approximately linear phase characteristics. Alternatively, it may be designed
with mildly nonlinear phase, and the phase error compensated in the digital interpolation
filter.

In this section, the post-filter design issues arising for single-bit and for multi-bit
DACs will be discussed separately, and illustrated with examples from commercial chips.

13.5.1 Analog Post-Filtering in Single-Bit Delta-Sigma DACs

SCF Buffer
CT
filterx

Figure 13.21 Post-filter for a 1-bit DAC and associated signals.
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The block diagram of a typical post-filter for a single-bit DAC is shown in Fig-
ure 13.21. The functions of the various blocks will be explained next. As mentioned
above, the input signal x(t) of the post-filter in a single-bit DAC is a large two-level signal.
The minimum swing of x(t) is restricted by the condition that the in-band component (i.e.,
the useful signal) needs to be much larger than the thermal and other noises introduced by
the filter itself. This necessitates a large amplitude, since most of the power in the DAC
output signal is out of band. Hence, if this signal were to be entered into a conventional ac-
tive filter, the active component (opamp or transconductance) would need an impractically
high slew rate to avoid slew-rate-limited operation that generates harmonic distortion.

A more subtle linearity problem is due to the slew-rate limited slopes and imperfect
symmetry of the waveform of x(t) itself, since it is generated by an imperfect internal
DAC. Also the exact shape of the waveform may depend on its previous values. Thus,
while the periodic samples x(nT ) of x(t) may correctly and linearly reproduce the useful
signal, the Fourier transform of the continuous-time x(t) will usually contain harmonics.

To alleviate both problems, it is customary to use switched-capacitor filter (SCF)
stages as the input stages of the post-filter. An SCF with sampled-data input and out-
put needs only the samples x(nT ) of x(t) as its input signal, and it can remove most of the
high-frequency power from the signal (and thus reduce its step-size) without requiring a
high opamp slew-rate. Once the step-size of the waveform is small enough, such that the
slew-rate required for its linear continuous-time (CT) processing is acceptably low, it can
then be filtered by a CT active filter.

C1
x(t)

1

12 (t)

1

(a)

(b)

0 T 2T 3T
t

slewing linear

(t)

2 1 2 1 2 1

2

C2

C3

1

Figure 13.22 An SC integrator.

To understand the basic difference between the slew-rate requirements of CT and SC
filters, consider the SC integrator shown in Figure 13.22. During phase 1, the input volt-
age x(t) charges C1; at the end of the nth clock phase 1, for properly designed switches,
the charge will very accurately equal C1 x[nT]. At the same time, C3 samples the output
voltage (t) of the opamp. This voltage has abruptly changed when 2 went high; as illus-
trated (in an exaggerated fashion) in Figure 13.22(b), it underwent a slewing and settling
process. The settling continues during 1. For properly designed opamp and switches, the
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final value (nT ) will be very close to the theoretical value (nT T ) (C1 C2)x(nT T ),
and the charge in C3 will be very close to C3 (nT ). Thus, the sampled signal processing
is essentially unaffected by the nonlinear effects introduced by the slewing and (possibly
nonlinear) settling of the opamp. Hence, its slew rate does not need to be very high, just
high enough to allow accurate settling of (t) in the allocated time period. This makes the
SCF particularly well suited for the task at hand.

I11 I12 I 1 I 2

n11 n12 n 1 n 2

in out

(a)

I1 I2 I

n1 n2 n

out

(b)

H1 : Biquad H : Biquad

I1 I2 H2

n1 n2

out

(c)

H1

Biquad1 Biquad2

in

in

Figure 13.23 Reconstruction filter architectures.

Since the signal/noise ratio of the SC filter in a DAC must often be extremely high,
its susceptibility to internal noise sources is an important design factor. This may result in
the choice of unconventional architectures for the SCF. The commonly used configuration,
a cascade of biquads, has inferior noise-gain properties, as will be demonstrated next.
Consider the block diagram of such a filter, shown along with its noise sources n in
Figure 13.23(a). Clearly, n11 has the same gain to the output as the input. When n12 is
referred back to the input, its power is divided by I11

2, where I11 is the transfer function
of the first integrator. This division is equivalent to differentiating (highpass filtering) the
noise, and it thus reduces the in-band noise introduced by n12.

Consider now the first noise source n 1 of the ith biquad. When it is referred back
to the input, its power is divided by the factor H1H2 H 1

2 , where H is the transfer
function of the kth biquad. Dynamic range scaling causes H1H2 H 1 1, and hence
when n 1 is referred back to the input, its in-band power is not reduced. The power gain of
n 2 is 1 I11 times that of n 1, and hence it is first-order noise-shaped. In conclusion, for
high oversampling ratios, the input-referred noise power is the weighted sum (with weight
factors larger than or equal to 1) of the unshaped input noise powers of all biquads in the
SCF, a decidedly unhappy situation.
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Consider, by contrast, the structures shown in Figures 7.23(b) and (c). Simple analysis
of the first one (sometimes called ‘inverse follow-the-leader’ structure) shows that referring
noise source n to the input is equivalent to multiplying its noise power by 1 I1I2 I 1

2.
Thus, all noise sources (except n1) are shaped, and for high OSR the noise is dominated by
n1, with all other sources contributing negligible in-band noise power.

For the structure of Figure 13.23(c), analysis shows that n1 remains unshaped, n2
first-order shaped, and all other noise sources are suppressed by a second or third-order
shaping. Hence, again n1 dominates the overall noise, for a very good noise performance.
(Notice that – like the structure of Figure 13.23(a), but unlike that of Figure 13.23(b),
Figure 13.23(c) allows the realization of finite transmission zeros, which improves its se-
lectivity capabilities.)

In conclusion, in high-accuracy DACs, the architectures of Figures 13.23(b) and (c)
may be preferable to that of Figure 13.23(a), or other commonly used SCF structures.
(Note that our discussions ignored the different sensitivities of the various configurations
to element value variations. This is usually less important in the present context, since the
variations tend to be small, and the exact response not too critical.)
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Figure 13.24 A fourth-order Bessel filter implemented with a cascade of biquads.

Figure 13.24–Figure 13.27 compare the realizations and noise-shaping properties of
two Bessel SCFs realizing the same transfer function [12]. Figure 13.24 shows a biquad
realization, and Figure 13.25 its noise transfer functions from source to output. Fig-
ures 13.26 and 13.27 show the same for the inverse follow-the-leader structure. The curves
demonstrate the superior noise-shaping properties of the latter architecture.

After sufficient filtering, the step-size of the SCF waveforms can be greatly reduced.
However, the waveforms will still exhibit opamp-induced transients representing nonlinear
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Figure 13.25 Noise gains from each opamp input to the output for the circuit of Figure 13.24.
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Figure 13.26 A fourth-order Bessel filter implemented with the inverse follow-the-leader topology.
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Figure 13.27 Noise gains from each opamp input to the output for the circuit of Figure 13.26.
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Figure 13.28 A direct-charge-transfer (DCT) stage.
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distortion. Hence, it is necessary to use a buffer stage that is driven by the samples (nT )
of the SCF output, and that provides a waveform free of such transients. This can be
achieved by using a direct-charge-transfer (DCT) stage [13]. A lowpass DCT stage is
shown in Figure 13.28(a). It samples the input signal x(t) at the end of phase 1, storing
it on C1. As 2 goes high, C1 is switched across C2, and the two capacitors share charges
(Figure 13.28(b)). Since the left terminal of the parallel combination is floating at this time,
no external charge enters the branch during the charge transfer; in particular, the opamp
does not need to contribute to the high impulsive current flowing. Thus, this transient is
governed by a simple first-order differential equation, with only the switch on-resistances
and the capacitance C1 C2 determining the time constant. This way, a fast and clean
transient, that does not exhibit the slewing and nonlinear settling behavior that the opamp
would normally exhibit, can be obtained.

The output of the buffer stage can now be fed to the CT filter. This filter needs to
eliminate the remaining noise above f . Typically, it is a second- or third-order active-RC
circuit, often using the Sallen–Key configuration [14].

13.5.2 Analog Post-Filtering in Multi-Bit Delta-Sigma DACs

For multi-bit DACs, the tasks, and hence the design, of the post-filter is much easier to
execute. The out-of-band noise power is reduced due to the smaller step-size; the remaining
power decreases exponentially with the number of bits N retained after truncation. The
corresponding simplification in the SCF is hence also greatly dependent on N .
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Figure 13.29 Combined DAC, DCT, and filter for a multi-bit DAC [8].

Two examples will be shown to illustrate the design of post-filters for multi-bit
DACs. For the first one [8], N 5 (31 levels) is used in the truncation. A single

SC stage (Figure 13.29) is used to perform the functions of the internal DAC and the SCF.
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Since it is a direct-charge-transfer circuit, the extra SC-to-CT buffer stage is unnecessary.
Thus the DAC, SCF, and buffer functions, which would have required 5–6 opamps for a
single-bit DAC, are all performed by a single opamp for the 5-bit system. In the circuit
of Figure 13.29, the DAC operation is performed during 1, by pre-charging some of the
4 31 small capacitors in the four capacitor arrays to V and discharging others. By
duplicating the capacitor arrays, and driving the secondary arrays with a delayed digital
signal, a first-order (2-tap) FIR filter function is realized. During 2, all capacitors are
connected in parallel with the feedback capacitors C in a DCT operation. The overall
transfer function between the digital input and the samples of the output signal, normalized
to the full-scale output, is hence

H (z)
1
2

1 z 1

1 r r z 1 (13.3)

where
r

C

2 (C1 C2 C31)
(13.4)

This simple first-order IIR filter was adequate to prepare the signal for CT filtering, per-
formed off-chip by a Sallen–Key filter.
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Figure 13.30 Another DAC with merged DAC, DCT and SCF filter functions [15].

Another DAC, described in [15], uses a 13-level (N 3 7 bits) truncation. Its
SCF is a third-order Chebyshev filter. It is shown in Figure 13.30 as a single-ended circuit
(the actual implementation is fully differential). The DAC action is performed during 1,
by charging to V or discharging the 12 capacitors in the input array C . During 2,
the circuit is configured as a third-order inverse follow-the-leader SC filter, with the charge
acquired by C during 1 acting as its input signal. A simple first-order active-RC stage
is used to perform both the CT filtering and the differential-to-single-ended conversion.
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13.6 Conclusions

In this chapter on the design of DACs, the general principles and basic DAC architec-
tures were discussed, and then various structures available for realizing their noise-shaping
loops were described. Due to the high accuracy made possible by the all-digital loop, some
novel loop architectures (not practical for ADC loops) exist in delta-sigma DACs. These
were introduced, along with some variants of the conventional MASH configurations spe-
cific to DACs.

As was the case for ADCs, either single-bit or multi-bit internal quantization may
be used in DACs. The relative merits of these two options were compared, and various
methods were discussed for the filtering or compensation of the error signals introduced
by the unavoidable nonlinearity of a multi-bit internal DAC. Again, some of these schemes
are similar to those applicable to multi-bit ADCs, as were previously discussed in Chapter
6; others are specifically aimed at DACs, and were described in this chapter.

Next, the design issues of the digital interpolation filter were discussed, and illus-
trated by an example. The example chosen was an efficient multi-stage filter used in a
commercial 18-bit audio delta-sigma DAC. Finally, the design of the analog post-filter
used in DACs was discussed. The two different situations arising for single-bit and for
multi-bit truncations were contrasted, and filter design techniques were described for both
systems, along with some typical examples.
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CHAPTER 14

INTERPOLATION AND DECIMATION
FILTERS

Most of this book deals with the modulator within a ADC or DAC system.
This chapter shifts the emphasis to the design of the companion digital interpolation and
decimation filters. An interpolation filter is used within a DAC system to transform
low-rate data into oversampled data for the digital modulator. Conversely, a decimation
filter is used within a ADC system to transform the high-speed and coarsely quantized
output of the analog modulator into high-resolution low-speed data. The combination
of an analog or digital modulator with its companion digital decimation or interpolation
functions constitutes a full ADC or DAC system.
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Figure 14.1 Interpolation.
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As depicted in Figure 14.1, an interpolation filter effectively up-samples its low-rate
input and lowpass-filters the resulting high-rate data to produce a high-rate output devoid
of images. A decimation filter, illustrated in Figure 14.2, effectively does the reverse:
high-rate input data is lowpass-filtered and then down-sampled to produce low-rate data
containing the low-frequency content of the input signal with minimal aliasing of quanti-
zation noise or unwanted out-of-band signals. As we will see shortly, this duality extends
deeper than just operational inversion: the transfer function of a decimation filter can be
used in an interpolation filter, and block diagrams can be turned around to transform a
decimation filter into an interpolation filter, and vice versa. For this reason, a reader only
interested in one of interpolation or decimation will benefit from an understanding of the
other topic. We start with interpolation because many of the concepts are more accessible
with interpolation, and we strongly recommend that readers solely interested in decimation
study the interpolation material as well.
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Figure 14.2 Decimation.
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Figure 14.3 Interpolation by a factor of 4.

Figure 14.3 illustrates the time-domain signals associated with interpolation by a fac-
tor of N 4. The incoming data is zero-stuffed with N 1 zero samples to increase the
sample rate by a factor of N , and the resulting high-rate data is lowpass-filtered to remove
the spectral images produced by zero-stuffing. In practice, a direct implementation of these
operations is inefficient because the lowpass filter LPF operates at the high output rate and
must process many zero samples.
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To exploit the zeros in the data, we first express N consecutive samples of the LPF
output as shown below for N 4:

[4n] h[0]x[n] h[4]x[n 1] h[8]x[n 2] (14.1)
[4n 1] h[1]x[n] h[5]x[n 1] h[9]x[n 2]
[4n 2] h[2]x[n] h[6]x[n 1] h[10]x[n 2]
[4n 3] h[3]x[n] h[7]x[n 1] h[11]x[n 2]

In these expressions, h[n] is the impulse response of LPF, x[n] is the low-rate input

H0(z) [4n]

[4n 1]

[4n 3]

x[n]
H1(z)

H2(z)

H3(z)

[4n 2]

H (z) H0(z4) z 1H1(z4) z 2H2(z4) z 3H3(z4)

(For each input sample
the commutator sweeps
through all positions
starting from the top)

Figure 14.4 Polyphase decomposition of an interpolation filter H (z).

data, and the zeros associated with the zero-stuffed data x [n] have been dropped. This set
of N equations is essentially a mathematical description of the polyphase decomposition

illustrated in Figure 14.4. Instead of operating an M-tap FIR filter at the 4 rate, this
arrangement operates four (M 4)-tap filters at the 1 sample rate, and thereby reduces the
computation rate by a factor of four.
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Figure 14.5 LPF specifications for (a) OSR 1 (b) OSR 1.

As illustrated in Figure 14.5, the LPF transition band is narrow when the input is
lightly oversampled, but the transition band is much wider when OSR , the oversampling
ratio of the low-rate input, is large. The LPF therefore needs to be complex when OSR
1 whereas with OSR 1 the LPF can be much simpler.

The simplest interpolation filter is the zero-order hold (ZOH), which instead of zero-
stuffing the low-rate input data to produce high-rate data simply holds each sample of the
low-rate data for N high-rate periods. In signal processing terms, the zero-order hold is
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equivalent to zero-stuffing and filtering with the rectangular impulse response

h[n] 1 0 n (N 1)
0 otherwise (14.2)
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Figure 14.6 Frequency response (normalized to the dc gain) of a zero-order hold and a first-order
hold (N 4).

The frequency response of this filter (Figure 14.6) shows that the image attenuation
is modest unless OSR is quite high. For example, a zero-order hold provides less than
40 dB of image attenuation if OSR is less than about 50.

The z-transform of (14.2)

H (z)
1 z

1 z 1 (14.3)

suggests that using the filter

H (z)
1 z

1 z 1

2

(14.4)

would double the alias suppression. This filter, scaled by 1 N to give unity dc gain, is a
first-order hold (FOH) and is equivalent to linearly interpolating between input samples.
Figure 14.6 plots the frequency response of a FOH for N 4.

1 Z 1

N
N 1

1 1ZOHx

Z 1 z

Figure 14.7 An efficient implementation of a first-order hold.

Figure 14.7 shows a FOH implementation in which the low-rate data is first differen-
tiated and scaled by 1 N , then held and integrated for N high-rate clock periods. That this
arrangement implements a FOH can be understood by multiplying the transfer functions
of the blocks in Figure 14.7:

H (z)
1 Z 1

N

1 z

1 z 1
1

1 z 1

1
N

1 z

1 z 1

2

(14.5)
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Note that in both the equation above, and in Figure 14.7, a capital Z is used as the z-
transform variable for low-rate data. Thus, Z 1 represents a delay of one low-rate clock
period, and, because one low-rate clock period is equivalent to N high-rate clock periods,
Z 1 z .

This implementation is very efficient but requires careful initialization. Specifically,
the initial states of the memory elements in the differentiator and the integrator need to
be the same (the usual choice is to initialize both to zero); otherwise, there will be a dc
offset between the input and output. Alternatively, the state of the integrator can be set to
the input every N cycles. The latter choice is recommended because the interpolator will
then be robust in the face of arithmetic or round-off errors, which would otherwise persist
indefinitely.

At this point, we owe the reader a discussion of scaling for interpolation filters. Since
applying a constant value to the input of a ZOH produces the same constant value at the
output, a ZOH clearly has a dc gain of unity. However, the dc gain of the transfer function
H (z) given in (14.3) is N . The missing factor of 1 N is from zero-stuffing (which reduces
the dc content by a factor of N) but this factor is not apparent when an impulse is applied
to the input of the interpolation filter. In order to convert an impulse response measured
in this way into the impulse response of the effective transfer function of the interpolation
filter, the response therefore needs to be scaled by 1 N .

1 Z 1

N
N

1
1 z 1ZOH

1
1 z 1

1 Z 1

N

(M-1) differentiators (M-1) integrators

x

Figure 14.8 Hogenauer implementation of a sinc interpolator [1].

Further improvement in the image suppression can be obtained by using higher-order
filters. Figure 14.8 shows that an Mth-order sinc filter

SINC (z)
1

N

1 z

1 z 1 (14.6)

can be implemented by sandwiching a zero-order hold between M 1 differentiators op-
erating at the low rate and an equal number of integrators operating at the high rate [1].
The scaling by 1 N in each differentiator is often either omitted or replaced by scaling
the low-rate input by 1 N 1. The reader is reminded that the system must be initialized
properly and that it is vulnerable to arithmetic errors unless further precautions are taken.

The structure of Figure 14.8 shows that if we omit the scaling by 1 N 1, then a
sinc interpolator can be implemented with M 1 additions at the low rate and M 1
additions at the high rate. This structure is very useful when variable N factors need to
be supported, but when only a fixed value of N is needed, it is often more efficient to use
other arrangements.

For N 2, the direct implementation obtained by cascading a ZOH with M 1
blocks implementing (1 z 1) accomplishes sinc2 interpolation with only M 1 additions
at the 2 rate. A polyphase implementation can be even more efficient. For example,
Figure 14.9 shows that a polyphase implementation of a sinc5

2 interpolator only requires
five additions at the 1 rate, which is less than the four additions at the 2 rate needed
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Figure 14.9 Polyphase implementation of a sinc5
2 interpolator.

by a direct implementation. The reader is encouraged to verify that the impulse response
of the filter shown in Figure 14.9 is equal to that of (1 z 1)5, namely 1 5 10 10 5 1 .
Since the implementation of sinc2 stages can be done quite economically, a cascade of
two interpolate-by-two stages is usually more efficient than a single interpolate-by-four
stage. For this reason, interpolators usually decompose the interpolation factor as finely as
possible.

14.2 Example Interpolation Filter

Let’s design an interpolation filter that interpolates a low-rate signal having OSR 2
by a factor of 64 and provides 60 dB image suppression with 0 5 dB passband gain
variation. To minimize computation, the interpolation filter will consist of a cascade of six
interpolate-by-2 stages (I1–I6) and will use sinc filters wherever possible.

The minimum image attenuation provided by a first-order sinc filter is given by

H1(e 2 )
1 e 2

N (1 e 2 )
sin ( f )

N sin ( f N )
(14.7)

where f 1 1 (2OSR ) and OSR is the oversampling ratio of the low-rate input to filter
stage i. For the last stage (I6), N 2 and OSR 64. The minimum alias attenuation
provided by a first-order sinc2 filter with this value of OSR is

H1(e 2 ) 38 dB (14.8)

I6 therefore needs to use a second-order sinc2 filter to provide more than 60 dB of image
attenuation.

For I6, the droop of a sinc2
2 filter at the passband edge f 1 (2OSR ) is a mere

0.001 dB and is therefore negligible. In general, however, the required sinc filter order
must account for the passband droop. We therefore need to compute A1, the minimum
attenuation provided by a first-order sinc filter relative to the passband droop, as indicated
below and tabulated in Table 14.1:

A1 H1(e 2 ) H1(e 2 ) (14.9)

Table 14.1 lists the A1 values and the resulting filter orders for all six stages. The
required filter order is given by 60 20 log10(A1)
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Table 14.1 Sinc filter order for example interpolator.

Stage OSR A1 (dB) Sinc2 order Droop (dB)
I6 64 38.2 2 0.001
I5 32 32.2 2 0.005
I4 16 26.2 3 0.03
I3 8 20.1 3 0.1
I2 4 14.0 5 0.8
I1 2 7.7 8 5.5

Table 14.1 shows that sinc filters of order 2 or 3 can be used for stages I3–I6, and that
these stages do not violate the 0.5-dB passband droop specification. For I1 and I2, however,
the sinc filter orders are much higher, and the filters have more droop than is tolerable. Two
solutions to this problem will be compared: adding a compensation filter COMP before I1,
and implementing I1 with an FIR filter that also provides droop compensation for I2–I6.

The code fragment below uses MATLABTM ’s firpm Parks–McClellan filter design
function to design the COMP compensation filter.

%% Design FIR compensator
order = [8 5 3 3 2 2];
fp = 0.25; % passband edge
% Evaluate freq response of IF for npb passband bands
npb = 20;
f = linspace(0,fp,npb*2);
H = ones(size(f));
for i=1:6

H = H .* zinc(f/2^i,2,order(i));
end
% Assemble arguments for firpm
comp_order = 4; % Determined by trial and error
wt = abs(H(1:2:end));
[b err] = firpm(comp_order,2*f, 1./abs(H),wt)
% Want 1+err/1-err < 0.5dB, i.e. err < 0.029

and yields

b = 0.1633 -0.8711 2.4243 -0.8711 0.1633
err = 0.0087

The order of the compensation filter, comp_order = 4, is chosen to make err less than
the target value of 0.029, as indicated in the code.

Figure 14.10 shows the full frequency response of the complete filter along with the
frequency responses of stages I3–I6. (To prevent clutter, the responses of stages I1 and
I2 are not shown.) As this figure shows, I6, whose output data rate is 64 , attenuates the

The four arguments to firpm as used in the code fragment are: i) the order of the FIR filter, ii) the endpoints
of the npb frequency bands in the passband, iii) the desired magnitude response at each point, and iv) the weight
associated with each band. Since firpm is intended to fit a frequency response over a set of frequency bands
spaced by “don’t-care" regions, the code fragment above abuses firpm somewhat. For large values of npb,
the resulting FIR filter yields an equiripple response when cascaded with the sinc filters.
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Figure 14.10 Frequency response of the complete interpolation filter.

image near f 32. Similarly, I5 notches out the images near f 16, while I4 and I3 take
care of the images at f 8 24 and f 4 12 20 28, respectively. I2 and I1 quash the rest.
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Figure 14.11 Folded and passband frequency responses.

Although Figure 14.10 does a good job of showing the big picture, the folded fre-
quency response of Figure 14.11(a) does a better job of showing the transfer function
magnitude in terms of the input frequency. In this plot, the horizontal axis is the input
frequency, and the numerous curves represent the transfer functions to all the image terms.
This plot shows that frequencies in the declared passband [0 0 25] appear at the output
with very little attenuation and that the magnitudes of the various image terms are less than

70 dB. (The fact that the magnitude of most image terms is less than our 60 dB spec at
all frequencies is accidental, and since OSRlow 2 has been pre-specified, this property is
also irrelevant.) The zoomed-in frequency response shown in Figure 14.11(b) confirms the
passband ripple, at 0 2 dB, is also well within spec.

Next, we investigate doing compensation within I1 itself. We can again use firpm,
but we need to add specifications to meet the requirement for 60 dB of attenuation in
[0 75 1 0]:

%% Design FIR interpolator with compensation
order = [8 5 3 3 2 2];
fp = 0.25; % passband edge
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% Evaluate freq response of I2-I6 for npb passband bands
% and nsb stopband bands
npb = 20; nsb = 10;
f = [linspace(0,fp,npb*2) linspace(1-fp,1,nsb*2)];
H = ones(size(f));
for i=2:6

H = H .* zinc(f/2^i,2,order(i));
end
% Assemble remaining arguments for firpm
I1_order = 8;
a = [1./abs(H(1:2*npb)) zeros(1,2*nsb)];
rwt = (undbv(0.25)-1)/undbv(-60);
wt = [ abs(H(1:2:2*npb)) abs(H(2*npb+1:2:end))*rwt ];
[b err] = firpm(I1_order,2*f/2,a,wt) % Want err < 0.029

yielding

b(1:5) = -0.0215 -0.0718 0.0141 0.3131 0.5041 ...
err = 0.0280
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Figure 14.12 Folded and passband frequency responses of the alternative design.

As before, the order of the filter, I1_order = 8, is determined iteratively. Figure 14.12
demonstrates that this design also meets the specifications, but just barely. In practice, it is
unwise to leave no margin for coefficient quantization, but we will ignore this concern and
proceed with a comparison of the computational complexity of the two designs.

A polyphase implementation of this design’s 9-tap I1 requires 5-tap and 4-tap FIR fil-
ters operating at the 1 rate. In contrast, the first design uses a 5-tap FIR filter operating at
the 1 rate plus a sinc5

2 interpolator. As illustrated in Figure 14.9, a polyphase implemen-
tation of a sinc5

2 interpolator only requires 5 additions at the 1 rate and therefore requires
less computation than the 4-tap FIR filter, which requires 2 multiplications and 3 additions.
Additional savings accrue due to the fact that coefficients in COMP can be quantized more
severely than coefficients in I1, since accurate coefficients are primarily needed to achieve
stopband attenuation specifications but COMP has no such requirements. In fact, quantiz-
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ing COMP’s coefficients to two or three canonical signed digit (CSD) terms as follows:

b0 2 3 2 5

b1 20 2 3

b2 21 2 1 2 4

b3 b1

b4 b0 (14.10)

provides sufficient accuracy to meet the passband ripple requirements (see Figure 14.13)
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Figure 14.13 Passband response with quantized COMP coefficients.

and thus the compensation filter only needs to perform 7 additions per input sample. Fig-
ure 14.14 shows the architecture of the chosen design and lists the number of additions
required per input sample for each stage. A total of 113 additions are required at the 1
rate with no multiplications. The computational burden is therefore less than two additions
per output sample.
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22
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22

I5
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22

I6
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22

input
rate 1 1 2 4 8 16 32
adds 7 12 5 3 3 1 1
add 7 12 10 12 24 16 32
rate

Figure 14.14 Interpolation filter structure and associated computational requirements.

Having chosen the filter architecture and coefficients, our next step is to select word
widths based on the noise requirements. This step is performed by choosing the places
where truncation is to be performed and then computing the transfer functions from the
truncators to the output of the filter. The word widths follow from dividing the noise
budget among the truncators. Since this is a fairly straightforward but not an especially
instructive exercise, we stop here.
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14.3 Decimation Filtering

As described in the introduction, decimation filtering can be performed by filtering the
high-rate input data with a lowpass filter whose cutoff is at f (2N ) and then selecting one
out of every N samples from the output of the filter. As was the case with interpolation,
such a direct implementation is inefficient because the lowpass filter operates at the high
(input) rate and performs unnecessary computations.

H (z) H0(z4) z 1H1(z4) z 2H2(z4) z 3H3(z4)

H0(z)x[4n]

x[4n 1]

x[4n 3]

[n]x

H1(z)

H2(z)

H3(z)

x[4n 2]

Figure 14.15 Polyphase implementation of a decimation filter (N 4).

The polyphase decomposition can reduce the computational burden by employing the
structure illustrated in Figure 14.15 for a decimation factor N 4. The response of this
filter to an impulse at n 0 is

h0 h[0] h[4] h[8] (14.11)

while the response to impulses at n 1 2 and 3 are

h1 h[1] h[5] h[9] (14.12)
h2 h[2] h[6] h[10] (14.13)
h3 h[3] h[7] h[11] (14.14)

The system therefore does the same job as filtering with a filter whose impulse response is

h h[0] h[1] h[2] (14.15)

and down-sampling the output of that filter by a factor of four, but does so with approxi-
mately one quarter of the computations.

Equations (14.11) through (14.14) demonstrate a somewhat counterintuitive property
of a decimation filter. Even though we describe such a system with a transfer function
H (z), which is a property of a linear time-invariant system, decimation filters are, strictly
speaking, time-varying. The periodic nature of the time variation is responsible for the
mixing products that we otherwise know as aliases.

As with interpolation filtering, it is efficient to perform decimation filtering in stages.
The example interpolation filter of Section 14.2 implemented a filter

H (z) COMP(z64)I1(z32)I2(z16)I3(z8)I4(z4)I5(z2)I6(z) (14.16)
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Figure 14.16 Decimation filter corresponding to Figure 14.14.

which we can turn around as shown in Figure 14.16 to accomplish decimation by a factor of
64. The alias attenuation and passband performance of this decimation filter are equivalent
to the image attenuation and passband performance of the interpolation filter. Since the
input to the interpolation filter was assumed to be oversampled by a factor of two, the
output of the decimation filter is also oversampled by a factor of two, and thus in the
context of a ADC system, further filtering would probably be necessary.
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x0 x1 x2 x3

N CK cycles

Figure 14.17 Accumulate-and-dump (AAD) decimator.

Thus far, we have emphasized the similarities between interpolation and decimation
filtering. Important differences that deserve mention relate to sinc filters and decima-
tion for ADCs. The decimator corresponding to a zero-order hold interpolator is the
accumulate-and-dump (AAD) decimator stage depicted in Figure 14.17. This block imple-
ments the first-order sinc response, scaled by N ,

H (z)
1 z

1 z 1 (14.17)

by accumulating the input for N cycles and then latching the result and resetting the inte-
grator. The first difference is therefore that an AAD stage requires computation whereas a
ZOH does not. For the sinc decimator illustrated in Figure 14.18, two more distinctions
emerge. The reader should be immediately alarmed by the open-loop integrators connected
to the input, since there is nothing to prevent a dc input from causing the integrators to ramp
to infinity. However, because we know that the combination of integrators and differentia-
tors has a gain N , and if we assume that x consists of nonnegative integers less than or
equal to K , then implementing all the arithmetic operations shown in Figure 14.18 modulo
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Figure 14.18 Sinc decimator.

any integer larger than K N will yield the correct result. Thus, the integrators are not
problematic, provided that they are allowed to wrap and enough bits are used. The second
distinction is that arithmetic errors within this structure result in finite-length transients,
and thus improper initialization of the memory elements in the integrators and differentia-
tors is not catastrophic.

The final differences between decimation and interpolation that we wish to highlight
relate to their use in systems. First, the word width of a ADC output is typically
quite narrow, 1–4 bits, and this fact can favor architectures that decimate by a large factor
up front. Second, the attenuation requirements of a decimation filter are typically much
more stringent than those of an interpolation filter. To see why, recall that the decima-
tion filter is responsible for rejecting out-of-band signals and, in systems such as wireless
receivers, out-of-band signals typically must be attenuated by roughly 100 dB to provide
adequate selectivity. Even in the absence of large interferers, the need to make the sum
of the noise from N 1 alias bands smaller than the in-band quantization noise typically
requires more than 80 dB of alias attenuation, whereas for interpolators 60 dB of image
suppression is often sufficient.

14.4 Example Decimation Filter

Let’s design a decimation filter for a ADC operating at an oversampling ratio of 64. Our
specifications for the decimation filter are 100 dB alias attenuation and 0.1 dB passband
variation. We start by designing a filter that decimates by 32 using five decimate-by-2
stages. The procedure is similar to that used in the interpolation example. Specifically, for
each stage we calculate the minimum alias protection provided by a first-order sinc filter

A1
H1(e 2 )
H1(e 2 )

sin ( f ) sin ( f N )
sin ( f N ) sin ( f )

(14.18)

where f 1 (2OSR ) is the upper edge of the passband, f 1 1 (2OSR ) is the
lower edge of the stopband, OSR is the oversampling ratio at the output of stage i, and
N 2 because each stage decimates by 2. The required sinc2 order is then given by
100 (20 log10 A1) , where x means the smallest integer greater than or equal to x. See

Table 14.2.

This table shows that the passband droop of stage D5 is quite large. Nonetheless,
using the same method as in the interpolation example, we find that a symmetric eighth-
order FIR compensation filter with coefficients

b = [ 0.0709 -0.4964 1.8350 -4.495 7.1722 -4.495 ...]
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Table 14.2 Sinc order for first five stages of the example decimator.

stage OSR A1 (dB) sinc2 order droop (dB)
D1 32 32.2 4 0.010
D2 16 26.2 4 0.042
D3 8 20.1 5 0.210
D4 4 14.0 8 1.348
D5 2 7.7 14 9.628

satisfies the 0 1-dB passband variation specification with sufficient margin that the quan-
tized coefficients

b0 2 4 2 7

b1 2 1 2 8

b2 21 2 3 2 5 2 7

b3 22 2 1 2 8

b4 23 20 2 2 2 4 2 6 (14.19)

with b5–b8 equal to b3–b0, also meet the passband ripple spec.
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Figure 14.19 Frequency response of D1-COMP.
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Figure 14.20 Folded frequency response of D1-COMP.

Figure 14.19 and Figure 14.20 plot the full and folded frequency response of D1 to D5
plus the compensator. Figure 14.19 includes the individual responses of D1–D4 to illustrate
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how these stages contribute to the overall frequency response. (To maintain legibility, the
response of D5 is not shown.) These figures demonstrate that sinc decimation with post-
compensation is able to accomplish decimation down to an output OSR of 2.

Let’s take a moment to tally the computational complexity of the decimation filter
thus far. A direct implementation of a sinc2 decimator requires M additions at the 2
rate, minus one, because the last (1 z 1) block is subsampled, or 2M 1 additions at the
1 rate. Similarly, a direct implementation of a sinc2 interpolator requires M 1 additions
at the 2 rate, or 2M 2 additions at the 1 rate. Table 14.3 lists these numbers along with
the number of 1 -rate additions for optimized polyphase implementations up to M 10.

Table 14.3 Number of low-rate additions for optimized sinc2 interpolation/decimation.

M 1 2 3 4 5 6 7 8 9 10
Interpolator– direct 0 2 4 6 8 10 12 14 16 18

Interpolator– polyphase 0 1 3 4 5 8 9 9 12 14
Decimator– direct 1 3 5 7 9 11 13 15 17 19

Decimator– polyphase 1 2 5 5 7 9 13 11 17 16

This table shows that for interpolation a polyphase implementation is generally more
efficient than a direct implementation, with particularly large savings for M 5 and 8.
For decimation, a polyphase implementation is somewhat less advantageous, but fortu-
nately, for the design at hand, the M 4, 5, and 8 cases provide roughly 20% savings.
A polyphase implementation is therefore advised for stages D1–D4. For D5, a polyphase
implementation of sinc14

2 requires 26 adds per output sample whereas a cascade of a non-
decimating sinc6

2 with a polyphase implementation of a decimating sinc8
2 (the same block

used in D4) requires 12 11 23 adds and is thus slightly more efficient. Last, if no partial
sums are reused, COMP requires 19 additions per output sample. However, by identifying
terms that are related by a power of 2, namely the 2 1 2 8 term in b1 and b3, and the

2 5 2 7 and 2 4 2 6 terms in b2 and b4, the adder count can be reduced to 17.

With these optimizations, the total computational burden is 210 additions per output
sample, nearly double that of our interpolation filter example. The primary reason for the
increase is the more stringent stopband specification. The one mitigating factor is that the
input word width is typically only a few bits, and thus the additions in the first (highest-rate)
stage have a lower power penalty than those in subsequent stages. In our design, the first
stage accounts for 38% of the total addition rate, and thus the savings associated with a low
word width are significant. In the extreme case of a single-bit modulator, implementing
the first few decimation stages with a lookup table can be especially efficient.

For a general-purpose ADC, it often suffices to decimate the data to within a factor
of two of the Nyquist rate. The reasons are twofold. First, because the channel filtering
requirements are dependent on the application, the user may need to filter the data further.
Second, implementing a steep transition band for frequencies that the user may reprocess
anyway wastes power and adds unnecessary latency. The decimation filter consisting of
D1–D5 and COMP is therefore a practical system as it stands. We will nonetheless add a
halfband filter (HBF) in the next section to complete the design, but at this point, we take
that stage as a given and show both the full architecture of the filter (Figure 14.21) and
example spectra at each stage (Figure 14.22).
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Figure 14.21 Complete decimation filter.
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Figure 14.22 Simulated spectra after each decimator stage.
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The decimation filter requires 700 additions per output sample. (Multiplications
are converted into additions based on the number of CSD terms.) Roughly 40% of these
operations are associated with the last stage of decimation. Since this stage has a very high
order (more than 200) and operates on wide words, the filter area is also dominated by the
last stage. The reasons for wanting to omit this stage should now be quite clear.

Figure 14.22 starts with the output spectrum of a third-order, five-level modulator
given 9 equally spaced 20-dBFS low-frequency input tones that extend beyond the signal
band. As the sample rate is decreased by each stage of decimation, the block of tones
occupies a wider portion of the frequency axis until the output of D5, where the decimation
filter has essentially eliminated three of the input signal’s highest-frequency components.
Looking at the [0 0 5] region of this spectrum, we see some attenuation of the second in-
band tone but no evidence of aliased tones. In [0 5 1 0] the alias tones at f 0 93 and
0.7 are apparent, but these get eliminated along with the other out-of-band tones by the
halfband filter. Looking at the second last plot, we can tell that COMP is doing its job by
the fact that the amplitude of the second in-band tone has been restored. The fact that only
the in-band tones remain in the last plot shows that HBF is also doing its job.

In addition to observing the behavior of the decimation filter with test signals at vari-
ous frequencies, it is important to verify that the decimation filter provides sufficient atten-
uation of the modulator’s quantization noise. The plots in Figure 14.22 report the in-band
noise (IBN) for this reason. As these plots indicate, the in-band noise is not affected until
after D5 where IBN actually decreases by 4 dB. This IBN decrease is a result of the atten-
uation of D5 in the upper region of the passband and does not correspond to a true SQNR
increase. This fact explains why IBN returns to its original value after the equalization pro-
vided by COMP. Since IBN is degraded by only 1 dB after the final stage of decimation,
this simulation also indicates that the decimation filter provides adequate attenuation of the
modulator’s quantization noise.

14.5 Halfband Filters

Halfband filters are a special class of filters suitable for decimation or interpolation by a
factor of 2. The frequency response of such filters satisfies the symmetry condition

H (e 2 (0 25 ) ) 1 H (e 2 (0 25 ) ) (14.20)

which causes nearly half of the impulse response samples to be zero. Figure 14.23 illus-
trates the impulse and frequency responses of an example 15-tap halfband filter that pro-
vides 32 dB of stopband attenuation with an 80% passband and stopband. All odd taps are
zero except for the middle tap, which is 0.5, and thus no computation is required for 7 of the
15 taps. The symmetry property implies that the passband ripple is dbv(1+undbv(-32))
= 0.2 dB.

Let’s compare the computational requirements of a halfband filter designed for an
80% passband and 80 dB of stopband attenuation, which implies a passband ripple of less
than 0.001 dB, with those of a general FIR filter. Using Matlab’s firhalfband function,
we find that a 47-tap halfband filter meets the specifications and that this filter has 24
non-trivial taps. A general FIR filter designed for similar stopband specifications but with
the passband ripple relaxed to 0.1 dB has 34 nonzero taps. In this case, the microscopic
passband deviation of the halfband filter comes at a lower computational cost than a general
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Figure 14.23 Example halfband filter.

FIR filter having a much larger passband variation. The halfband filter does require more
registers and has higher latency, however.
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Figure 14.24 Decimating and interpolating halfband filter implementations.

Since we are interested in using halfband filters for decimation or interpolation by a
factor of two, Figure 14.24 depicts polyphase implementations of decimating and inter-
polating halfband filters. The alternating zeros of the impulse response make one branch
of each polyphase implementation collapse to a pure delay, which saves both computa-
tion and registers. To facilitate reuse of partial products, each diagram uses the transpose
filter topology and includes a block that performs all coefficient multiplications on each
incoming data sample at one time.
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14.5.1 Saramäki Halfband Filter

Despite the significant computational savings provided by a halfband filter relative to a
regular FIR filter, the amount of computation can still be quite high, especially when the
transition band is narrow and the stopband attenuation is large. Normally, large stopband
attenuation requires accurate coefficients and consequently many CSD terms for each co-
efficient, but the remarkably efficient halfband filter structure proposed by Saramäki [2]
achieves high attenuation using just a few CSD terms. The design process is somewhat
complex, but fortunately, the designer the toolbox function designHBF (page 525)
encapsulates the procedure.

Let’s use this function to design the final stage of our decimation filter. We will con-
tinue to require 100 dB of stopband attenuation but will need to reduce the fraction of pro-
tected frequencies below 100%. If we choose a passband fraction of 90%, then frequencies
between 0 and 0 9 f 2 will experience minimal attenuation and corruption by aliases
but frequencies between 0 9 f 2 and f 2 may be attenuated and corrupted by
aliases. The latter frequency range may need to be filtered out by the user according to
the channel-filtering requirements. The code below creates halfband filters having a 90%
passband and a 100-dB stopband using the standard and Saramäki methods.

hbf1 = firhalfband(’minorder’,0.9*0.5,undbv(-100));
[f1,f2,info] = designHBF(0.9*0.25,undbv(-100),0);
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Figure 14.25 Frequency response of the example decimator’s halfband stage.

The firhalfband function returns a 123-tap filter requiring a minimum of 31 multiplica-
tions plus 62 registers and additions while designHBF returns a filter that requires about
200 registers but only 284 additions and no multiplications. The frequency response curves
shown in Figure 14.25 show that the Saramäki system does not have the numerous notches
in the stopband exhibited by the standard filter but nonetheless provides more than 110 dB
of attenuation over much of the stopband. A realization of this filter is depicted in Fig-
ure 14.26, and the coefficients and their CSD expansions are listed in Table 14.4.
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Figure 14.26 Structure of the Saramäki halfband decimation filter.

Table 14.4 F1 and F2 coefficients.

n f1(n) CSD f2(n) CSD

1 0.9453 20 2 4 2 7 0.6249 2 1 2 3 2 13

2 0 6406 2 1 2 3 2 6 -0.2031 2 2 2 5 2 6

3 0.1953 2 2 2 4 2 7 0.1177 2 3 2 7 2 11

4 0 0791 2 4 2 6 2 10

5 0.0566 2 4 2 8 2 9

6 0 0410 2 5 2 7 2 9

7 0.0311 2 5 2 13 2 15

8 0 0232 2 6 2 7 2 12

9 0.0168 2 6 2 10 2 12

10 0 0122 2 6 2 8 2 11

11 0.0085 2 7 2 10 2 12

12 0 0058 2 8 2 9 2 14

13 0.0037 2 8 2 12 2 15

14 0 0032 2 8 2 10 2 12
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14.6 Decimation for Bandpass Delta-Sigma ADCs

e 0

modulator
data @ f

0

multi-bit complex
data @ f Dec

N

complex
data @ f N

Figure 14.27 Bandpass decimation.

Decimation for a bandpass ADC can be implemented as shown in Figure 14.27. In this
arrangement, the coarsely-quantized output of the modulator is multiplied by a complex
exponential e 0 to mix the desired band to dc. The resulting complex data is then
processed by a pair of real decimation filters.

coarse
mix

e 1

N1
Dec1

mix
fine

e 2

look-up
1 0

4 16

table

2 0 1

N2
Dec2

Figure 14.28 Coarse/fine mixing.

Since a complex mix operating at the fast modulator rate can be computationally
expensive, it is helpful to restrict the mixing frequencies to, say, multiples of f 64 so that
the mixer only needs to multiply by 16 possible values of sine and cosine, and thereby
allows us to replace multiplication with a table lookup operation. After partial decimation,
a fine mixing operation can center the passband precisely at dc without incurring a large
power penalty because the data rate has been reduced. Figure 14.28 illustrates the concept.
The granularity of the coarse mix limits the amount of decimation that can be performed
before the fine mix, and thus there is a trade-off between the power consumed in the coarse
and fine mixing operations. For example, if the coarse mix has a resolution of f 64,
then decimation by no more than a factor of 16 or so can be performed without requiring
steep filter characteristics. If the power consumption of a multiplier operating at f 16 is
reasonable, then the resolution of the coarse mix is sufficient. If not, then the coarse mix
needs to have finer resolution.

If the center frequency is fixed at f 4, the mixing operation is trivial, because sine
and cosine are period-4 sequences: 0 1 0 1 and 1 0 1 0 . In this case, the structure
of Figure 14.29 can be used to perform both downconversion by f 4 and filtering by
a transfer function H (z) that has been decomposed into H (z) H0(z2) z 1H1(z2).
Similar structures can be used for other simple rational fractions of f .
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Figure 14.29 Bandpass decimation for f0 f 4.

14.7 Fractional Rate Conversion

Thus far, we have only considered interpolation or decimation by integer factors. Decima-
tion by a rational factor M N can, in principle, be performed by interpolating by M and
then decimating by N [3]. This approach is workable if M is small, but is prohibitive in the
general case. We start with an example that falls into the first category and then consider
decimation by arbitrary fractional factors.

14.7.1 Decimation by 1.5

x G 2 H
@3 f

3
@ f@1 5 f

G

0 0 5 0 75

Frequency

Domain:

0 0 5 0 75 1 1 5 0 0 5

H

Figure 14.30 Architecture of a decimate-by-1.5 system.

Figure 14.30 depicts a candidate architecture for a decimate-by-1.5 system. As illus-
trated in the figure, filtering performed at the input rate widens the transition band of the
high-rate filter H , and thus we expect this arrangement to be more efficient than omitting
G and putting the full burden on the H filter. The reader should recognize that H can be
merged with the up-sampler by employing a 2-phase interpolator topology or merged with
the down-sampler by employing a 3-phase decimator topology. However, if H is merged
with the up-sampler, then 2/3 of the computed samples are simply discarded and thus this
arrangement is very inefficient. Similarly, if H is merged with the down-sampler, then half
of the data on which the phase filters operate is zero. To eliminate these inefficiencies, the
polyphase arrangement shown in Figure 14.31 can be used. The reader is encouraged to
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verify that this system mimics the up-sampling, filtering, and downsampling operations of
Figure 14.30.

[2n]

[2n 1]
x

H (z)
5

0
z H (z6)

H0

H3

x[3n]

H1

x[3n 1]

x[3n 2]

z 1H4

z 1H2

z 1H5

Figure 14.31 A polyphase decimate-by-1.5 arrangement.

Let’s compare decimation with and without the G filter in the context of an example.
Our design targets are a 90% passband with a ripple of 0.1 dB and at least 100-dB attenu-
ation for all aliases and image terms. Code for performing the two designs is given below,
and the resulting frequency responses are shown in Figure 14.32 and Figure 14.33.
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Figure 14.32 Frequency response of the single-stage decimate-by-1.5 filter.

%% Single-stage filter
A_min = 100; % dB
pbr = 0.1; % passband ripple
pbf = 0.9; % passband fraction
f = [[0 0.5*pbf 0.5]/3 0.5];
a = [1 1 0 0];

Hint: Confirm that applying impulses at times 0, 1, and 2 to the input of the upsampler in Figure 14.30 produces
the sequences [0] [3] [6] [9] , 0 [1] [4] [7] and 0 0 [2] [5] , respectively, at the

output. Then verify that the diagram in Figure 14.31 does likewise.
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Figure 14.33 Frequency response of the cascade decimate-by-1.5 filter.

w = [1/(undbv(pbr)-1) undbv(A_min)];
[b0 err] = firpm(223,f*2,a,w);
%% G prefilter
k = 0.75; % fraction of pbr allocated to prefilter
f = [0 0.5*pbf 0.5 0.75]/1.5;
a = [1 1 0 0];
w = [1/(undbv(k*pbr)-1) undbv(A_min)];
[g err] = firpm(113,f*2,a,w);
%% H
f = [[0 0.5*pbf 1]/3 0.5];
a = [1 1 0 0];
w = [1/(undbv((1-k)*pbr)-1) undbv(A_min)];
[h err] = firpm(23,f*2,a,w);

As with previous examples, the filter orders (113 and 23) given in the listing above were
determined by trial and error.

This example shows that the H filter is considerably simpler when the prefilter G is
present (24 vs. 224 taps). Since the number of taps (114) in G is approximately half of
that of H in the single-stage design, it would appear at first glance that the cascade design
requires much less computation than the single-stage design. A closer look shows that
G operates on data at the 1 5 rate, whereas H operates at effective rate of 0 5 (H is
broken into six pieces, three of which are used to produce an output sample), and thus the
balance is shifted in favor of the single-stage design. Looking even closer, we find that
the coefficient symmetry in G halves the number of multiplications, whereas coefficient
symmetry in H is less helpful because only coefficients which are shared by H0 and H3, or
H1 and H4, or H2 and H5, offer savings. Taking all these factors into account, we find that
the single-stage design requires 94 multiplications per output sample, whereas the cascade
arrangement needs 95.5 and therefore conclude that including a prefilter is not helpful after
all.

The preceding conclusion is valid if G is an FIR filter. We prefer FIR filters because
symmetric FIR filters have linear phase and because the polyphase decomposition only
works for FIR filters. However, because G is not after an up-sampler or before a down-
sampler, it is unable to make use of the polyphase decomposition, and thus one of our usual
reasons for preferring an FIR filter has evaporated. Designing an IIR filter as follows
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%% IIR prefilter
[gn wp] = ellipord(pbf*0.5/1.5*2, 0.5/1.5*2, 2*k*pbr, A_min);
[gb ga] = ellip(gn, 2*k*pbr, A_min ,wp);

we find that an 11th-order IIR filter meets the specifications while only requiring a total
of 23.5 multiplications per output sample. Therefore, if we allow G to be an IIR filter, the
savings associated with prefiltering can be significant. Figure 14.34 shows the frequency
response of this design.
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Figure 14.34 Frequency response of the decimate-by-1.5 with an IIR prefilter.

14.7.2 Sample-Rate Conversion

x[m]

f f

(t)
[n]

LPF

D

C

x(t) x[m] (t mT )

Figure 14.35 Conceptual model of a sample-rate converter.

The last topic we consider is decimation or interpolation by arbitrary factors. This
operation is essential for interfacing a data converter operating at a one rate to a DSP
operating at an unrelated rate, or for bridging digital systems operating asynchronously.
The signal-processing model we use is depicted in Figure 14.35. In this conceptual system,
the incoming sequence x[m] is first converted into a continuous-time signal consisting of
Dirac impulses, given by

x(t) x[m] (t mT ) (14.21)

This is then filtered by a lowpass filter whose role is to eliminate the images of x(t) around
multiples of f . The impulse response of the LPF is denoted by h (t). The resulting
continuous-time signal at the filter’s output ( (t)) is then resampled at the output sampling
rate, yielding the sequence [n]. The bandwidth of the lowpass filter must be less than both
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Figure 14.36 Input and output samples of the sample-rate converter.

f 2 and f 2 to prevent aliasing, and the stop band attenuation of the filter must be
large enough to keep image and alias artifacts at acceptable levels.

Our goal is to mimic the operation of the system in Figure 14.35 using only digital
processing. If we assume that the input sample rate is 1 Hz, then (t) is given by

(t) x[m]h (t m) (14.22)

and our job is to compute (t) at points t nT , where T is the output sample period. As
depicted in Figure 14.36, we define m nT and nT nT , where nT means the
largest integer less than or equal nT , and thus

[n] (nT ) x[m k]h (k ) (14.23)

Now, if h (k ) and all its derivatives are continuous over the interval [k k ], it can
be expanded in a Taylor series around k as

h (k ) h (k)
dh (t)

dt

1
2!

d2h (t)
dt2

2 1
3!

d3h (t)
dt3

3 (14.24)

Denoting

h (k) c0[k]
1
n!

d h (t)
dt

c [k]

we can rewrite (14.23) as

[n] x[m k] c0(k) c1[k] 2c2[k] (14.25)

The resulting block diagram is shown in Figure 14.37. Thus, [n] can be determined by
filtering x[m] with a bank of filters with impulse responses given by c [k] c1[k] , and
weighted addition of the bank outputs. As seen earlier, the impulse response of the Mth
filter in the bank is 1 M! times the sampled version of the Mth derivative of h (t).
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C C1 C0

x

1

Figure 14.37 [n] can be determined by appropriately weighting the outputs of a bank of filters
driven by x[m].

The Taylor expansion in (14.24), in general, has infinite terms, and, it will therefore
necessitate an infinite number of filters in the bank. If, however, h (t) was chosen to be an
Mth-order polynomial in t, the RHS of (14.24) would have only (M 1) terms. Further,
because we are only interested in evaluating h (k ) for [0 1), it is sufficient if
h (t) is a polynomial piecewise. For example, h (t) could be expressed as an Mth-order
polynomial for 0 t 1, and a different Mth-order polynomial for 1 t 2. This
increased freedom can only be expected to help with the design of h (t).

t
N10

h (t)
h ( ) c0[0] c1[0] c [0]

h (1 ) c0[1] c1[1] c [1]

Figure 14.38 h (t) constructed with polynomial fragments.

Further, to simplify computation, we restrict h (t) to last for N periods of the input
clock. Since h (t) is also polynomial piecewise, it follows that all its derivatives must also
last for N input clock cycles. Since the taps of all the filters in the bank of Figure 14.37
depend on the sampled derivatives of h(t), it follows that these filters will have N taps.

Inspection of Figure 14.37 shows that h (t), which consists of N unit-width Mth-
order polynomial fragments spanning [0 N], can be expressed as

h (k )
c0[k] c1[k] c [k] 0 k N

0 k N
(14.26)

A sample h (t) is illustrated in Figure 14.38. Restrictions on the c [k] coefficients can re-
sult from such requirements as symmetry (for flat group delay), threading the x[m] sample
points, continuity, and smoothness. However, in the examples that follow, we only require
symmetry and continuity.

The block diagram of Figure 14.37 can be equivalently recast as that shown in Fig-
ure 14.39. This structure, called the Farrow filter [7], provides an efficient implementation
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C C1 C0

x

Figure 14.39 The Farrow structure.

of (14.23). Recall that, as in Figure 14.37, the (M 1) blocks C0 C are N-tap FIR fil-
ters. The impulse response of filter C is c [0] c [1] c [N 1] . Note that these (M 1)
filters operate on the same input sequence x and thus can use the same sample memory.
In a processor-based implementation, it is efficient to write the input samples to a circular
buffer in a RAM and then read the samples out and perform the filter computations at the
lesser of the input and output rates. Of course, the multiplications by need to occur at
the output rate. In a hardware implementation, the multiplications in the FIR filters can
be hardwired, because the coefficients are known, but the multiplications by require true
multipliers.
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Figure 14.40 (a) h (t) obtained by repeated convolution of a unit rectangle. (b) Fourier transform.

Figure 14.40 shows an example h (t) obtained by convolving the unit rectangle with
itself four times. The coefficients of the resulting five fourth-order segments can be conve-
niently be assembled into a 5 5 matrix

C
1
24

0 0 0 0 1
1 4 6 4 4

11 12 6 12 6
11 12 6 12 4
1 4 6 4 1

(14.27)

The rows of this matrix are the polynomial coefficients for each segment and the
columns are the coefficients of the FIR filters. For example, the polynomial associated
with the second segment is

h (1 )
1
24 6

2

4

3

6

4

6
(14.28)
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and the impulse response of the C1 filter (which implements the 1 polynomial term for all
five segments) is

c1[k]; k 0 1 2 3 4 0
1
6

1
2

1
2

1
6

(14.29)

Since scaling the coefficients by a factor of 24 yields simple integers, the multiplica-
tions in the FIR filters can be implemented with a small number of additions. (Scaling by
1/24 can be performed at either the input or output.) Unfortunately, as the Fourier trans-
form plotted in Figure 14.40 shows, the image/alias attenuation provided by this filter is
modest and the droop is large unless the input is oversampled. Droop can be compensated
with a pre-filter, but if 100 dB of alias protection is needed, the input must be oversampled
by at least a factor of 5.5.
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Figure 14.41 (a) h (t) obtained by designPBF. (b) Fourier transform.

Coefficients yielding more aggressive filtering can be found via the toolbox func-
tion designPBF, which follows Hunter’s method [8]. Figure 14.41 shows the impulse
response of a 10-segment fifth-order polynomial-based filter and its associated Fourier
transform. This filter provides 100 dB of image attenuation with 0.1 dB of passband ripple
if the input oversampling ratio is only two. The C matrix for this filter is given below.

%C matrix obtained by designPBF.
% Use mu-0.5 as the polynomial argument.
C = [
-0.001345 -0.007276 -0.013868 -0.007952 0.008608 0.011467
-0.012460 0.016669 0.074003 0.038627 -0.042437 -0.039262
0.042131 -0.025342 -0.246761 -0.140367 0.134082 0.118809
-0.144527 -0.015873 0.677698 0.517909 -0.219522 -0.254117
0.610687 1.112924 -0.491399 -1.063063 0.120475 0.375982
0.610687 -1.112924 -0.491399 1.063063 0.120475 -0.375982
-0.144527 0.015873 0.677698 -0.517909 -0.219522 0.254117
0.042131 0.025342 -0.246761 0.140367 0.134082 -0.118809
-0.012460 -0.016669 0.074003 -0.038627 -0.042437 0.039262
-0.001345 0.007276 -0.013868 0.007952 0.008608 -0.011467
];

If the ratio T of the output sample rate to the input sample rate is known exactly, then
the Farrow structure only needs to be augmented with a block that determines m and for
each output sample. If the ratio is not known exactly, or if the input and output clocks are
asynchronous, then a block that estimates T is needed, as indicated in Figure 14.42. In
this system, the incoming data are written into the sample memory using a write port on
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Figure 14.42 The asynchronous sample-rate converter.

the RAM while a Farrow filter reads samples out of the read port. The rate-ratio estimator
supplies the Farrow filter with an estimate of T in order to determine m and for each
output sample. T must be updated sufficiently often to track changes in the input and
output frequencies but otherwise should be heavily filtered. To prevent the read address
from overrunning the write address, the rate-ratio estimator can use the write and base read
addresses as part of the estimation process.

14.8 Summary

In this chapter, we examined interpolation for DAC systems and decimation for
ADC systems. We observed numerous parallels between the two operations, and noted

that a decimator can be converted into an interpolator and vice versa. We found that when
the oversampling ratio before interpolation or after decimation is 2 or more, a cascade of
sinc filters combined with equalization yields an efficient system. Decimating down to, or
interpolating up from, an oversampling ratio close to 1 is a computationally intensive oper-
ation that is most efficiently performed by a halfband filter. The Saramäki topology imple-
ments a halfband filter and allows the coefficients to be quantized to a few CSD terms. We
closed with abbreviated discussions of decimation and interpolation by fractional factors
and asynchronous sample-rate conversion using the Farrow filter structure.
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APPENDIX A

SPECTRAL ESTIMATION

The purpose of this appendix is to demystify the procedure of analyzing data using the
fast Fourier transform (FFT) [1]. The FFT is widely used to estimate the power spectral
density of data, but, it is also sometimes abused in the process. When using the FFT
to analyze data, the designer needs to be familiar with several important concepts,
namely windowing, scaling, noise bandwidth, and averaging. This appendix deals with
each of these subjects in turn, applies them to an example, and concludes with a brief
discussion of the mathematical background.

The FFT is a fast algorithm for computing the Fourier transform

X[ f ]
1

0
x[n] exp ( j2 f n) (A.1)

of a length-N discrete-time sequence x[n] at the N frequency points, the FFT bins:

0 1 N 2 N (N 1) N . A discrete-time signal with period N consists of a dc term
and harmonics of the fundamental frequency f1 1 N . X[ f ] of a sinusoidal sequence

x[n] A cos 2
i

N
n (A.2)

Here, as earlier, the sampling rate is assumed to be 1 Hz. Further, [ ] is a sequence, since takes on discrete
values.
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where i 0 and i N 2 is given by

X[k] 2 N , k i

0, otherwise.

The amplitude of the ith harmonic of a period-N sequence is therefore given by
2 X[ f ] N ; so the FFT can easily be used to compute the power spectrum of a periodic
signal. Unfortunately, since data is typically not periodic, a direct application of the
FFT to data is unwise at best.

We will consider the “noise” associated with data to be like a random signal, for
which a more technical term is stochastic process [2]. If the data comes from measure-
ments, then it is bound to contain components that are true noise and our viewpoint is
justified. For data obtained from simulation, the noise is the result of a deterministic pro-
cess, and so it is not strictly proper to describe this process as random. However, since
the process is complex, nonlinear, and often chaotic, the fact that the process is actually
deterministic has little practical impact.

A.1 Windowing

Windowing is the act of multiplying the signal to be analyzed by a window function [n]
before subjecting it to an FFT. At first glance, it would appear that this operation would
alter the spectral content of the signal and therefore be undesirable. Although it is true that
windowing alters a signal’s spectrum, some windowing is inevitable because we can never
obtain an infinite-length record of modulator data. The best we can do is operate on a finite
record of length N . Since a finite-length record can be thought of as the product of the
infinite-duration modulator output and a rectangular window

rect[n] 1, 0 n (N 1)
0, otherwise, (A.3)

the damage caused by windowing the data has already been done. Thus the question is not
“Should I window my data?” but rather “How should I window my data?”

The answer to this question lies in the relationship between the spectrum of the orig-
inal data and that of the windowed data. Since multiplication in the time domain corre-
sponds to convolution in the frequency domain, the spectrum of a windowed signal is,
loosely speaking, the spectrum of the unwindowed signal convolved with the window’s
spectrum. In order to obtain an accurate spectrum, the designer must choose a window that
introduces sufficiently low errors through spectral convolution.

Consider the three windowing functions illustrated in Figure A.1. Table. A.1 lists
their definitions and summarizes various parameters discussed in this Appendix. Since
a rectangular window has discontinuities at its endpoints, whereas the Hann and Hann2

windows are continuous (up to the second and fourth derivatives, respectively), we would
expect the rectangular window to have a great deal more high-frequency content than the
other two windows. This suspicion is confirmed in Figure A.2, which plots the magnitudes
of the Fourier transform

W ( f )
1

0
[n] exp ( j2 f n) (A.4)



WINDOWING 485

8 16 24 320

0.2

0.4

0.6

0.8

1

n

[n
]

Rect window

Hann window

Hann2 window

Figure A.1 The rectangular, Hann and Hann2 windows.

Window Rectangular Hann Hann2

[n], n 0 1 N 1 1 1
2 1 cos 2 1

4 1 cos 2 2

2
2 N 3

8 N 35
128 N

No. of nonzero FFT bins 1 3 5

W [0] N 1
2 N 3

8 N

NBW 1 3
2

35
18

Table A.1 Properties of the three windows illustrated in Figure A.1.
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normalized by the dc gain W (0), for each of these windows. N 32 points were used.

As Figure A.2 shows, the peaks of the high-frequency lobes in the spectrum of the
rectangular window approach a constant value (which is proportional to 1 N), whereas
the peaks of the high-frequency lobes of the Hann and Hann2 windows go to zero with

60 dB/decade and 100 dB/decade slopes, respectively. The high-frequency behavior of
a window’s spectrum is of critical importance in determining the magnitude of the error
resulting from convolution.
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Figure A.2 Fourier transform magnitudes of the rectangular, Hann and Hann2 windows.

As a demonstration of the convolution problem, Figure A.3 shows the spectrum of
some noise-shaped data, the Fourier transform of a 256-point rectangular window, and
the Fourier transform of the windowed data. As indicated in Figure A.3, the skirts of
the window convolve with the out-of-band noise, thereby filling in the noise notch and
dramatically reducing the apparent SNR.
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Figure A.3 A rectangular window obscures a noise null.

The designer must ensure that this noise leakage is small compared to the actual
in-band noise density. In the context of a high-accuracy modulator, the difference
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between the out-of-band noise density and the in-band noise density can be 80 dB or more.
Figure A.3 indicates that with N 256, the observable difference between the out-of-band
and in-band noise densities is only about 23 dB. Increasing N improves the situation, but
only at the rate of 3 dB per octave. According to this trend, a rectangular window would
need to use more than 108 points to reliably observe an 80-dB difference in noise densities!

The designer is therefore compelled to use something other than a simple rectan-
gular window. Many different windows exist (e.g., see [3] or [4]), but the feature of greatest
importance to the designer is the amount of high-frequency attenuation provided by the
window. Windows that have finite high-frequency attenuation, such as the Hamming win-
dow, are less desirable than windows whose high-frequency attenuation increases without
bound. In particular, a Hann window with N 512 is able to resolve an 80-dB difference
in noise density, while a Hann2 window does similarly well with N 256. Since the num-
ber of data points needed to provide sufficient frequency resolution is usually on the order
of several thousand, a simple Hann window usually provides sufficient protection against
noise leakage.
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Figure A.4 FFTs of cohorent and incohorent sine waves (N 512).

Another important consideration in the analysis of data is signal leakage. It is
convenient, both in the lab and in simulation, to use sine-wave excitation. However, the
frequency of that sine wave must be located precisely in an FFT bin; otherwise, signal
power will bleed into all bins. Figure A.4 illustrates this phenomenon with several length-
512 FFTs of two sine waves. The first has a frequency that is located precisely in an FFT
bin (specifically, bin 73, which is close to a frequency of 1 7), while the second has a
frequency of exactly 2 7 and so is not in an FFT bin. In the first case (the coherent case),
the sine wave’s power is concentrated in a small number of FFT bins (1 for a rectangular
windowing, 3 for Hann, and 5 for Hann2). In the incoherent case, the sine wave’s power is
smeared over all FFT bins. The severity of the spreading is determined by how far away
the sine wave is from the nearest bin frequency, and by the shape of the window’s skirts.
As was the case with noise leakage, the rectangular window exhibits the greatest signal
leakage because its skirts are the broadest.

In simulation, it is a simple matter to place the signal frequency in an FFT bin and
thereby eliminate signal leakage entirely. The reader is cautioned to use an accurate value
of when computing the samples of a signal x[n] cos(2 f n N ). With a Hann window,
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rounding to 4 decimal creates skirts on the signal whose total power is 84 dBc; with
a rectangular window, the skirt power is 18 dB higher. In the lab, signal leakage can be
minimized by phase-locking the generators, and by setting the signal frequency accurately.
If it is not possible to place the signal frequency in an FFT bin, windowing can be used to
reduce spectral pollution. Alternatively, the signal’s frequency, amplitude and phase can
be estimated, and the estimated signal can be subtracted from the data record to leave only
the noise.

The final question regarding windowing that we will address is the length of the win-
dow required to obtain an accurate estimate of a modulator’s SNR. The simplest way to
estimate SNR is to compute the ratio of the power in the signal bins to the power in the
in-band noise bins. Since the signal is usually placed in-band, it therefore occupies a few
of the in-band bins. The number of bins occupied by the signal should be a relatively small
fraction (less than 20%) of the in-band bins in order to have a small effect (less than 1 dB)
on the SNR estimate. If we are using a Hann window, the signal will occupy 3 bins, and
thus we should have at least 15 in-band bins, which in turn requires N (30 OSR) bins
in all, where OSR is the oversampling ratio.

If the noise is assumed to be flat in-band, the missing noise power can be accounted
for by multiplying the power in the noise bins by 1 (1 a), where a is the fraction of
in-band bins occupied by the signal. Unfortunately, at least in simulation, the in-band
quantization noise follows the NTF and so tends not to be flat. Alternatively, the noise in
the signal bins can be estimated by subtracting out the estimated signal component before
or after performing the FFT.

Another consideration regarding the required length of the data record relates to the
repeatability of the SNR measurement. Since the FFT of a random signal is itself a random
quantity, the in-band noise power computed from the FFT is also a random quantity. Nu-
merical experiments indicate that using N 30 OSR results in SNR estimates that have a
standard deviation of about 1.4 dB. Using N 64 OSR results in a standard deviation of
about 1.0 dB, while N 256 OSR is needed to reduce the standard deviation to 0.5 dB.
This degree of repeatability is usually not required on an individual measurement, since it
is common for many measurements to be carried out, as would be the case during an input
amplitude sweep. The authors recommend using N 64 OSR

A tertiary consideration regarding the required length of the data record relates to the
observable spurious-free dynamic range (SFDR). Using N 64 OSR is usually sufficient
to reliably observe an SFDR that is about 10 dB greater than the SNR. In order to detect
tones that are more than 10 dB below the total in-band noise, N needs to be increased.
Specifically, doubling N increases the observable SFDR by 3 dB.

A.2 Scaling and Noise Bandwidth

The spectral spike associated with a sine-wave component in the data record has a height
that is dependent on both the window type and the window length. Most windows have
max W ( f ) W (0) (i.e., the peak in the window’s spectrum occurs at dc), and so the
height of the peak corresponding to a sine wave is (A 2)W (0), where A is the amplitude
of the sine wave.
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When displaying a spectral plot, it is customary to scale the FFT such that a full-
scale sine wave yields a 0-dB spectral peak. If we denote the full-scale range by FS, the
amplitude of a full-scale sine wave is A FS 2 and thus the scaled version of the FFT that
we would present is

Ŝ ( f )
1

(FS 4)W (0)

1

0
[n] exp ( j2 f n)

2

(A.5)

Note that we have squared the magnitude in order to allow us to interpret Ŝ ( f ) as a
power spectral density (PSD). The power of a sine-wave signal relative to the power of a
full-scale sine-wave signal is therefore given by 10 log Ŝ ( f ), where f is the frequency of
the signal. The units of this quantity are often given as dBFS (dB relative to full-scale) in
order to emphasize that the reference power is the power of a full-scale sine wave, but we
will see shortly that these units omit an important detail. The caret on the symbol Ŝ ( f )
indicates that the expression above is an estimate of the PSD, while the prime indicates
that we have scaled the estimate so that sine-wave signals yield calibrated spike heights.
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Figure A.5 FFTs of a sine wave plus white noise; sine-wave scaling.

Although the scaling above is convenient for analyzing a signal that consists of sine
waves, it is less convenient for analyzing a signal that contains noise. Figure A.5 illustrates
the problem by plotting Ŝ ( f ) for a signal consisting of a 0-dBFS sine wave plus white
noise having the same power as the sine wave, when different-length rectangular windows
are used. (A rectangular window is safe here, since we are not interested in observing
notches in Ŝ ( f ).) Although the signal spike has the same height in each case, the average
“noise floor” of Ŝ ( f ) drops by 3 dB every time N doubles. Since the noise power is
actually 0 dBFS in each case, the location of the “noise floor” is not the only piece of
information that the reader needs.

The problem with sine-wave scaling is that the noise power is, on average, evenly
distributed over all FFT bins, whereas the sine-wave power is concentrated in only a few
bins. With sine-wave scaling, the power of individual sine-wave components can be read
directly from the spectral plot, but in order to determine the noise power, the powers of all
the noise bins must be added together.

An alternative method of scaling, that is common in signal-processing texts, is to scale
the FFT such that it provides a calibrated noise density. The appropriate scale factor in this
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case is 1 2
2 , where

2
2

1

0
[n] 2 (A.6)

is the energy of the window. When this scaling is used, the PSD estimate is

Ŝ ( f )
1

2

1

0
[n] exp ( j2 f n)

2

(A.7)

and as a result unit-power white noise yields a unit (0 dB) density, regardless of the window
type or length. Unfortunately, scaling for noise in this way makes the height of a sine-wave
spike dependent on both the window type and length.

Our resolution of the scaling dilemma follows the solution adopted in laboratory in-
struments, specifically in spectrum analyzers. A spectrum analyzer must contend with the
problem of representing the spectrum of a periodic signal such as a sine wave on the same
display as is used to represent the spectral density of a broadband signal such as noise. In
a spectrum analyzer, the signal can be thought of as being processed by a bank of filters
possessing identical filtering characteristics (gain, bandwidth, etc.), albeit with different
center frequencies. The instrument measures the powers at the outputs of the filters and
constructs a plot of power versus center frequency.

For a sine-wave input, the display shows a peak at the input frequency, the height of
which equals the input power. Thus, the spectrum displayed by a spectrum analyzer is like
an FFT with sine-wave scaling. For noise, the display indicates the power of the noise that
lies in each filter’s bandwidth. In other words, for a noise-like signal, the display gives the
product of the noise density and the noise bandwidth of the filters.

For a filter with infinitely steep roll-off, the noise bandwidth (NBW) is equal to the
filter’s bandwidth, while for a filter with a single-pole roll-off, NBW is 2 times the 3-
dB bandwidth. In general, a filter’s NBW is the bandwidth of an ideal brick-wall filter
that has the same output power given a white noise input and that has the same mid-band
gain as the filter under consideration. A spectrum analyzer solves the scaling problem
by providing NBW along with each spectrum, thereby providing the designer with the
information needed to convert the power shown on the display into a power density. NBW
depends on various analyzer settings, including those that determine the frequency range
and resolution for the spectral plot.

The solution to the scaling problem in the case of a PSD obtained from a sine-wave
scaled FFT is similarly simple. All we need do is provide the value of NBW.

The value of NBW is listed in Table. A.1 for the three windows considered in this
appendix. For each window, NBW is inversely proportional to N , and thus doubling N

reduces the apparent level of the noise in a sine-wave scaled PSD by 3 dB, as indicated
in Figure A.5. Let us now illustrate the use of NBW in the calculation of the total noise
power. From the top curve in Figure A.5, we observe a “noise floor” of approximately

15 dBFS, which is the amount of power in bandwidth NBW 1 N 2 6. The total

The notation 2 means 2-norm, a special case of the -norm
1

0
[ ]

1

.
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power in the entire Nyquist band [0 0 5] is therefore 0 5 NBW 25 times (15 dB more
than) the observed 15 dBFS value, or 0 dBFS, which is exactly the correct value.

The NBW, or at least sufficient information for calculating it (i.e., N and the window
type), should always be given for a sine-wave-scaled FFT. Furthermore, in order to em-
phasize that such an FFT represents a power spectral density, the units on the vertical axis
should be shown as power per unit bandwidth. Since we report power in dBFS and since
the unit of bandwidth is NBW, the vertical axis is usually labeled “dBFS/NBW.”

A.3 Averaging

Our final point of discussion regarding the use of FFTs for spectral analysis is averaging.
We noted earlier that the FFT of a random waveform is itself a random quantity. This
quantity is random in both magnitude and phase, but since we are concerned with power
we will only consider the magnitude. The magnitude of a particular frequency bin in an
FFT of a random signal is a random value that has both a mean and a standard deviation. It
turns out that the expected value of the FFT magnitude equals the actual PSD (convolved
with the window), as we would hope, but that the standard deviation of the magnitude is
large. In fact, the standard deviation is equal to the expected value!
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Figure A.6 Three length-64 FFTs of 0-dBFS white noise.

The upshot of this property is that a single FFT results in a “noisy” spectral estimate,
as demonstrated in Figure A.6, where three length-64 FFTs of 0-dBFS white noise are
shown. Each curve is expected to be a flat line at 15 dBFS, but this is not apparent in the
figure due to the large degree of variability in the individual bin magnitudes.

If one is computing a noise power (by summing the powers over a range of FFT bins),
the variability of an individual bin magnitude is not problematic, provided that a sufficient
number of bins are used. However, if one is trying to construct a clear graph of a spectral

Although in common usage, units such as dBFS/NBW or dBm/Hz are deceptive: a density of 1 dBm/Hz does
yield 1 dBm of power in a 1 Hz bandwidth but not 2 dBm of power in a 2 Hz bandwidth! Doubling the bandwidth
doubles the power (a 3-dB increase), yielding a 4 dBm power in a 2 Hz bandwidth. The way out of this notational
morass is to interpret dBm/Hz to mean dB with respect to a 1 mW per Hz density. Similarly, dBFS/NBW means
dB with respect to a density equivalent to the power of a full-scale sine wave spread over a bandwidth NBW.
Expected value is another term for mean, or average, value.
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Figure A.7 A length 217 FFT without averaging.

density, the erratic nature of the bin magnitudes results in a fuzzy plot such as that shown
in Figure A.7. Here, instead of a smooth curve, we see a broad black band spanning nearly
20 dB that obscures the true noise density. There are two solutions to this problem, namely
averaging and integration. Averaging can be performed by either averaging many FFTs, or
by averaging nearby bins in a single FFT.

Averaging multiple FFTs requires the use of multiple data records. When a single
large data record is available, it can be partitioned into many (possibly overlapping) records
that are individually windowed and transformed with an FFT. Averaging the squared mag-
nitudes of these FFTs reduces the standard deviation and so improves the legibility of the
spectral plot. (At this point, we owe the reader a confession: the spectra shown in Fig-
ures A.3 and A.7 were averaged in this way for the sake of clarity.) Similarly, averaging
the powers in adjacent bins will also smooth the FFT, effectively by “filtering” it. We
present an example of this form of averaging in the next section.

0 0.25 0.5
-120

-80

-40

0

f

1

0
Ŝ
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Figure A.8 Integrated version of the noise spectrum in Figure A.7.

The second method for increasing the legibility of a spectrum is to plot its accumu-
lated value, scaled by 1 (N NBW). The resulting plot shows the amount of power con-
tained in the band from dc up to the current frequency, and so saves the reader the effort
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of performing an integration to obtain a noise power. Of course, the designer is obliged to
empty the signal bins before performing the integration, and the method must be changed
when dealing with bandpass noise-shaping. Figure A.8 illustrates the effectiveness of the
technique in smoothing out the FFT of Figure A.7. (Some might argue that the technique
is too effective, since it hides high-frequency tones that are readily apparent in the original
FFT.)

A.4 An Example

We have now covered the essential topics regarding the use of the FFT to calculate a sine-
wave scaled PSD, and so are ready to demonstrate them with an example. An example
MATLAB code for producing a record of data, and analyzing it according to the pro-
cedures above is given below.

% Compute modulator output and actual NTF
%
OSR = 32;
ntf0 = synthesizeNTF(5,OSR,1);
N = 64*OSR;
fbin = 11;
u = 1/2*sin(2*pi*fbin/N*[0:N-1]);
[v tmp1 tmp2 y] = simulateDSM(u,ntf0);
k = mean(abs(y)/mean(y.^2))
ntf = ntf0 / (k + (1-k)*ntf0);
%
% Compute windowed FFT and NBW
%
w = hann(N); % or ones(1,N) or hann(N).^2
nb = 3; % 1 for Rect; 5 for Hann^2
w1 = norm(w,1);
w2 = norm(w,2);
NBW = (w2/w1)^2
V = fft(w.*v)/(w1/2);
%
% Compute SNR
%
signal_bins = fbin + [-(nb-1)/2:(nb-1)/2];
inband_bins = 0:N/(2*OSR);
noise_bins = setdiff(inband_bins,signal_bins);
snr = dbp(sum(abs(V(signal_bins+1)).^2)/sum(abs(V(noise_bins+1)).^2
%
% Make plots
%
figure(1); clf;
semilogx([1:N/2]/N,dbv(V(2:N/2+1)),’b’,’Linewidth’,1);
hold on;
[f p] = logsmooth(V,fbin,2,nb);
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plot(f,p,’m’,’Linewidth’,1.5)
Sq = 4/3 * evalTF(ntf,exp(2i*pi*f)).^2;
plot(f,dbp(Sq*NBW),’k--’,’Linewidth’,1)
figureMagic([1/N 0.5],[],[], [-140 0],10,2);

The first block of code synthesizes a fifth-order NTF, creates the binary data, esti-
mates the quantizer gain and computes the actual NTF. The second block of code computes
the scaled and windowed FFT, as well as NBW. The last two code blocks compute the SNR
and create the plots shown in Figure A.9.

The NTF has zeros optimized for an oversampling ratio OSR 32. The number of
FFT points is set to N 64 OSR 2048, as advocated in Section A.1. Note that the
half-scale input signal is placed precisely in an FFT bin (specifically, bin 11). Many practi-
tioners use an odd FFT bin to ensure that the input data contains no repeated segments, but
this is not strictly necessary. In a Nyquist converter, it is wise to use an input that contains
no repeated segments in order to exercise as many codes as possible, but in a converter
the internal state of the converter typically ensures that the output data is not periodic.

As indicated in the second code block, different windows can be tried. The Hann
window is used here. The number of nonzero signal bins for the Hann window is
nb 3. NBW is calculated directly for the window, using an expression that will be
justified in the next section. As indicated in Table A.1, the result for the Hann window
is NBW 1 5 N 7 3 10 4. The last line of the second code block calculates the FFT,
and scales it by half the dc gain of the window to perform sine-wave scaling.

In the third code block, the SNR is calculated as the ratio of the total power in the sig-
nal bins to the total power in the noise bins, and the result for this simulation is SNR=81 dB.
If a rectangular window were used instead, the poor high-frequency roll-off of the window
would corrupt the in-band portion of the spectrum and yield a lower SNR. For this partic-
ular example, the shortfall was a disastrous 23 dB.
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Figure A.9 Example PSDs produced by the MATLAB code fragment.

In the fourth and final code block, the raw and smoothed PSD estimates are compared
graphically with the theoretical PSD. As expected, the raw FFT produces an erratic graph
from which it would be difficult to tell if the observed PSD follows the expected PSD or
not. Smoothing is performed with the toolbox function logsmooth. This function
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averages the power across a number of bins in order to reduce the variance of the PSD, and
also subsamples the result to yield points that are spaced fairly evenly on a logarithmic axis.
This nearly even spacing is achieved by using a number of bins that increases geometrically
beyond a user-specified frequency (that defaults to the third harmonic of the input). See
the “help” information associated with logsmooth for further details. With this function,
it is feasible to present the results of a multi-million point simulation without having to
plot millions of points in the spectrum. As Figure A.9 shows, the agreement between
the expected and observed PSDs is quite good. The justification of the formula used to
calculate the expected PSD is also relegated to the next section.

As a final demonstration, we will use the PSD plot of Figure A.9 to manually
estimate the SNR. The signal power is read directly from the graph: 6 dBFS. The
noise power is computed by multiplying the noise density by the bandwidth, or in
logarithmic terms, by adding 10 log( NBW ) to the noise density in dB. For OSR
32, BW 0 5 OSR 1 6 10 2, and since NBW 7 3 10 4, the conversion fac-
tor from average noise density to total noise power is 10 log( NBW ) 13 dB. Since
the average noise density in the passband is 100 dBFS/NBW, the estimated SNR is

6 ( 100 13) 81 dB.

A.5 Mathematical Background

Until now, the emphasis in this Appendix has been on using the FFT to perform spectral
estimation for the signals in a modulator, while keeping the mathematics to a minimum.
The mathematical theory associated with spectral estimation involves a number of concepts
from stochastic processes that are worthy of chapters in themselves. We cannot do justice
to such concepts in a subsection of an Appendix, so we content ourselves to list the key
results and to use these as justification for a number of formulas that appeared earlier in
the Appendix without justification. See [2] for background.

The autocorrelation function of a discrete-time stationary random process x is de-
fined as

r [k] E x[n]x[n k] (A.8)

where E denotes expectation (“average”). The z-transform of r is

R (z) r [n]z (A.9)

and the PSD S ( f ) of x is defined as

S ( f ) R (exp( j2 f )) (A.10)

In other words, the PSD is defined as the Fourier transform of the autocorrelation

function. The link between this definition and the more intuitive definition that S ( f ) is
the amount of power between frequencies f and f d f divided by df is established by the
following two properties of S :

A stationary random process is a random process whose statistical properties (mean, variance, etc.) do not vary
with time.
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a. P
1

0
S ( f )df , where P E[ x[n] 2] is the power of x.

b. If the output of a linear system having a transfer function H (z) is when the input x,
then S ( f ) H (e 2 ) 2S ( f ).

The first property says that integrating the power spectrum over all frequencies yields
the power in the signal. The second says that filtering the signal multiplies its power
spectrum by the squared magnitude of the filter’s transfer function. The intuitive definition
of S ( f ) results from considering an ideal filter H having a bandwidth df about a frequency
f .

Note that the first property required S to be integrated over the range [0 1]. Since
real signals have symmetric spectra, it is common in practice to use the range [0 0 5] and
double the density

P
0 5

0
2S ( f ) df (A.11)

Since the range [0 5 1] is equivalent to the range [ 0 5 0], this convention is similar to
the conventional use of single-sided spectral densities when dealing with continuous-time
signals.

Next, we consider the estimate of S (repeated from (A.7))

Ŝ ( f )
1

2

1

0
[n] exp ( j2 f n)

2

(A.12)

(We can obtain Ŝ ( f ) for f i N from a length-N FFT of x windowed by .)

The properties of this estimate are

a. E Ŝ ( f ) S ( f ) ( )
2
2

, where S ( f ) W ( f ) 2 and denotes circular convolu-

tion.

b.

E

1

0

Ŝ (i N )
N

P

c. V ar[Ŝ ( f )] [S ( f )]2, where V ar[ ] denotes the variance of a statistical quantity
.

The first property states that Ŝ ( f ) is a biased estimator of S ( f ), namely, that the ex-
pected value of Ŝ ( f ) is not equal to the true value of S ( f ). For example, if a rectangular
window is used, then the expected value of the estimated PSD is equal to the actual PSD
convolved with

S ( f )
2
2

1
N

sin (N f )
sin ( f )

2
(A.13)
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The second property effectively states that summing the values of Ŝ ( f ) contained in
the FFT, and dividing by N (effectively, integrating Ŝ ( f ) over [0 1] ) yields an unbiased
estimate of the power in x. This property justifies summing the powers in the in-band bins
of an FFT to produce an estimate of the in-band noise power.

The third property states that the PSD estimate is very “noisy,” in that the standard
deviation of the estimate is as large as the quantity being estimated. This property necessi-
tates the use of averaging, as discussed in Section A.3.

We are now in the position to calculate the NBW of a sine-wave-scaled FFT employ-
ing a window . We assume that W ( f ) has a peak at f 0 and that the full-scale range
is [ 1 1]. The sine-wave-scaled PSD estimate is, from (A.5),

Ŝ ( f )
1

W (0) 2

1

0
[n] exp ( j2 f n)

2

(A.14)

Thus, Ŝ ( f ) is related to Ŝ ( f ) (as given in (A.12)) by

Ŝ ( f )
Ŝ ( f ) 2

2

W (0) 2 2 (A.15)

Since we want the integral of Ŝ ( f ) to yield the power in x relative to the power in
a full-scale sine wave, which is 0.5, we need to find the value of NBW that makes the
following equation true:

E
0 5

0

Ŝ ( f )
NBW

df
P

0 5
(A.16)

Since E
0 5
0 2Ŝ ( f )df P ,

NBW
2
2

W (0) 2 (A.17)

This expression was used to tabulate NBW for the three windows in Table. A.1. If we
assume that [n] 0, then W (0) 1 and we arrive at the compact result

NBW
2
2
2
1

(A.18)

that was used in the code that generates Figure A.9 . Since the full-scale range affects both
the definition of Ŝ ( f ) and the reference power of 0.5 proportionally, NBW is independent
of the full-scale range.

The final formula that requires explanation is the formula for the expected PSD of the
shaped quantization noise of a modulator, that was also used in the code that generates
Figure A.9. Since the power of quantization noise is 2 12, where is the step size, the
power of the quantization noise for an M-step quantizer with a step size 2, relative to
the power M2 2 of a full-scale sine wave is 2 (3M2). Assuming the quantization noise is
white, its one-sided PSD is twice this amount, or 4 (3M2) . Thus, the PSD of the shaped
quantization noise is

S ( f )
4 H (e 2 ) 2

3M2 (A.19)

For consistency with a plot of Ŝ ( f ), S ( f ) must be multiplied by NBW.
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APPENDIX B

THE DELTA-SIGMA TOOLBOX

Getting Started

Go to http://www.mathworks.com/matlabcentral/fileexchange/ and
search for delsig. Download and unzip the delsig.zip file. Add the delsig directory
to the MATLAB path. To improve simulation speed, compile the simulateDSM.c file by
typing mex simulateDSM.c at the MATLAB prompt. Do the same for simulateMS.c.

The Delta-Sigma toolbox requires the Signal Processing toolbox and the Control Sys-
tems toolbox; the clans and designPBF functions also require the Optimization toolbox.

The following conventions are used throughout the Delta-Sigma toolbox:

Frequencies are normalized; f 1 corresponds to the sampling frequency, f .

Default values for function arguments are shown following an equals sign in the pa-
rameter list. To use the default value for an argument, omit the argument if it is at
the end of the list, otherwise use NaN (not-a-number) or [] (the empty matrix) as a
place-holder.

The loop-filter of a general delta-sigma modulator is described with an ABCD matrix.
See "Modulator Model Details" on page 533 for a description of this matrix.
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Demonstrations and Examples

dsdemo1 Demonstration of the synthesizeNTF function. Noise transfer function syn-
thesis for a 5th-order lowpass modulator, both with and without optimized
zeros, plus an 8th-order bandpass modulator with optimized zeros.

dsdemo2 Demonstration of the simulateDSM, predictSNR and simulateSNR func-
tions: time-domain simulation, SNR prediction using the describing function
method of Ardalan and Paulos, spectral analysis and signal-to-noise ratio cal-
culation. Lowpass, bandpass, multi-bit lowpass examples are given.

dsdemo3 Demonstration of the realizeNTF, stuffABCD, scaleABCD and mapABCD

functions: coefficient calculation and dynamic range scaling.
dsdemo4 Audio demonstration of MOD1 and MOD2 with sincn decimation.
dsdemo5 Demonstration of the simulateMS function: simulation of the element se-

lection logic of a mismatch-shaping DAC.
dsdemo6 Demonstration of the designHBF function. Hardware-efficient halfband fil-

ter design and simulation.
dsdemo7 Demonstration of the findPIS function: positively-invariant set computa-

tion.
dsexample1 Discrete-time modulator design example.
dsexample2 Continuous-time lowpass modulator design example.

NTF (and STF)
available.

Specify OSR,
lowpass/bandpass,

no. of Q. levels.

synthesizeNTF,

designLCBP

simulateDSM,

ABCD: state-
space description
of the modulator.

scaleABCD

Parameters for a
speci c topology.

stuffABCD

mapABCD

Time-domain sim-
ulation and SNR
determination.

simulateSNR,

calculateTF

predictSNR
findPIS or
find2dPIS

Convex positively
invariant set.

clans

Parameters for an
LCBP modulator.

simulateESL
designHBF, simulateHBF
mapCtoD, designLCBP

Also:

Figure B.1 Flowchart of key toolbox functions.
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Key Functions

ntf = synthesizeNTF(order=3,R=64,opt=0,H_inf=1.5,f0=0) page 505
ntf = clans(order=4,R=64,Q=5,rmax=0.95,opt=0) page 506
ntf = synthesizeChebyshevNTF(order=3,R=64,opt=0,H_inf=1.5,f0=0)page 507
Synthesize a noise transfer function.

[v,xn,xmax,y] = simulateDSM(u,ABCD,nlev=2,x0=0) page 508
[v,xn,xmax,y] = simulateDSM(u,ntf,nlev=2,x0=0)
Simulate a delta-sigma modulator with a given input.

[snr,amp] = simulateSNR(ntf,OSR,amp=...,
f0=0,nlev=2,f=1/(4*R),k=13) page 509

Determine the SNR versus input amplitude curve by simulation.

[a,g,b,c] = realizeNTF(ntf,form=’CRFB’,stf=1) page 510
Convert a noise transfer function into coefficients for the specified topology.

ABCD = stuffABCD(a,g,b,c,form=’CRFB’) page 511
Calculate the ABCD matrix given the parameters of the specified topology.

[a,g,b,c] = mapABCD(ABCD,form=’CRFB’) page 511
Convert the ABCD matrix into the parameters of the specified topology.

[ABCDs, umax] = scaleABCD(ABCD,nlev=2,f=0,xlim=1,ymax=nlev+2) page 512
Perform dynamic range scaling on a delta-sigma modulator described by ABCD.

[ntf,stf] = calculateTF(ABCD,k=1) page 513
Calculate the NTF and STF of a delta-sigma modulator described by the given
ABCD matrix, assuming a quantizer gain of k.

[sv,sx,sigma_se,max_sx,max_sy] =
simulateMS(v,mtf,M=16,d=0,dw=[1-],sx0=[0-]) page 514

Simulate the element-selection logic of a mismatch-shaping DAC.
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Functions for Continuous-Time Systems

[ABCDc,tdac2]= realizeNTF_ct(ntf,form=’FB’,tdac,ordering=[1:n],
bp=zeros(-),ABCDc) page 516

Realize an NTF with a continuous-time loop-filter.

[sys, Gp] = mapCtoD(sys_c,t=[0 1],f0=0) page 517
Map a continuous-time system to a discrete-time system whose impulse response
matches the sampled pulse response of the original continuous-time system. See
dsexample2.

H = evalTFP(Hs,Hz,f) page 518
Compute the value of the product of the continuous-time transfer function H

and the discrete-time transfer function H at frequencies f . Use this function to
evaluate the signal transfer function of a CT ADC system.

Functions for Quadrature Systems

ntf = synthesizeQNTF(order=3,OSR=64,f0=0,NG=-60,ING=-20) page 519
Synthesize a noise transfer function for a quadrature delta-sigma modulator.

[v,xn,xmax,y] = simulateQDSM(u,ABCD|ntf,nlev=2,x0=0) page 520
Simulate a quadrature delta-sigma modulator with the given input.

ABCD = realizeQNTF(ntf,form=’FB’,rot=0,bn) page 521
Convert a quadrature noise transfer function into a complex ABCD matrix for the
specified structure.

ABCDr = mapQtoR(ABCD) and [ABCDq ABCDp] = mapR2Q(ABCDr) page 522
Convert a complex matrix into its real equivalent and vice versa.

[ntf stf intf istf] = calculateQTF(ABCDr) page 523
Calculate the noise and signal transfer functions of a quadrature modulator.

[sv,sx,sigma_se,max_sx,max_sy]=
simulateQESL(v,mtf,M=16,sx0=[0-]) page 524

Simulate the Element Selection Logic of a quadrature differential DAC.

Note: simulateSNR works for a quadrature modulator if given a complex NTF or ABCD
matrix; simulateDSM can also be used for a quadrature modulator if given an ABCDr

matrix and a 2-element nlev vector.
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Specialty Functions

[f1,f2,info] = designHBF(fp=0.2,delta=1e-5,debug=0) page 525
Design a Saramäki half-band filter for use in a decimation or interpolation filter.

y = simulateHBF(x,f1,f2,mode=0) page 527
Simulate a Saramäki half-band filter in the time domain.

[C, e, x0] = designPBF(N,M,pb,pbr,sbr,ncd,np,ns,fmax) page 528
Design a symmetric polynomial-based filter (PBF) according to Hunter’s method.

[snr,amp,k0,k1,sigma_e2 = predictSNR(ntf,OSR=64,amp=...,f0=0) page 529
Predict the SNR versus input amplitude curve using the describing function
method.

[s,e,n,o,Sc] = findPIS(u,ABCD,nlev=2,options) page 530
Find a convex positively-invariant set for a delta-sigma modulator.

[data, snr] = findPattern(N=1024,OSR=64,ntf,ftest,Atest,
f0=0,nlev=2,quadrature=0,dbg=0) page 532

Create a length-N data record which has good spectral properties when repeated.

Utility Funtions

Delta-Sigma Utility

mod1, mod2

Set the ABCD matrix, NTF and STF of the standard 1st- and 2nd-order modulators.

snr = calculateSNR(hwfft,f,nsig=1)

Estimate the SNR given the in-band bins of a windowed FFT and the location of the input.

[A B C D] = partitionABCD(ABCD, m)

Partition ABCD into A, B, C, D for an m-input state-space system.

H_inf = infnorm(H)

Compute the infinity norm (maximum absolute value) of a z-domain transfer function.

y = impL1(ntf,n=10)

Compute n points of the impulse response from the comparator output back to the com-
parator input for the given NTF.

y = pulse(S,tp=[0 1],dt=1,tfinal=10,nosum=0)

Compute the sampled pulse response of a continuous-time system.

sigma_H = rmsGain(H,f1,f2)
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Compute the root mean-square gain of the discrete-time transfer function H in the fre-
quency band [ f1 f2].

General Utility

dbv(), dbp(), undbv(), undbp(), dbm(), undbm()

The dB equivalent of voltage/power quantities, and their inverse functions.

window = ds_hann(N)

A Hann window of length N . Unlike MATLAB’s original hanning function, ds_hann
does not smear tones which are located exactly in an FFT bin (i.e. tones having an integral
number of cycles in the given block of data). MATLAB 6’s hanning(N,’periodic’)
function and MATLAB 7’s hann(N,’periodic’) function are the same as ds_hann(N).

mag = zinc(f,n=64,m=1)

Calculate the magnitude response of a cascade of m sinc filters at frequencies f .

Graphing Utility

plotPZ(H,color=’b’,markersize=5,list=0)

Plot the poles and zeros of a transfer function.

plotSpectrum(X,fin,fmt)

Plot a smoothed spectrum.

figureMagic(xRange,dx,xLab, yRange,dy,yLab, size)

Performs a number of formatting operations for the current figure, including axis limits,
ticks and labelling.

printmif(file,size,font,fig)

Print a figure to an Adobe Illustrator file and then use ai2mif to convert it to FrameMaker
MIF format. ai2mif is an improved version of the function of the same name originally
written by Deron Jackson djackson@mit.edu .

[f,p] = logsmooth(X,inBin,nbin)

Smooth the FFT X, and convert it to dB. See also bplogsmooth and bilogplot.

mailto:djackson@mit.edu
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synthesizeNTF

Synopsis: ntf = synthesizeNTF(order=3,OSR=64,opt=0,H_inf=1.5,f0=0)

Synthesize a noise transfer function (NTF) for a delta-sigma modulator.

Input
order The order of the NTF. order must be even for bandpass modulators.
OSR The oversampling ratio. OSR is only needed when optimized NTF zeros

are requested.
opt A flag used to request optimized NTF zeros.

opt=0 puts all NTF zeros at band-center.
opt=1 optimizes the NTF zeros according to the high-OSR limit.
opt=2 puts at least one zero at band-center, but optimizes the rest.
opt=3 uses the Optimization toolbox to optimize the zeros.

H_inf The maximum out-of-band gain of the NTF. Lee’s rule states that
H_inf<2 should yield a stable modulator with a binary quantizer. Re-
ducing H_inf increases the likelihood of success, but reduces the atten-
uation provided by the NTF and thus the theoretical resolution of the
modulator.

f0 The center frequency of the modulator. f0 0 yields a bandpass modu-
lator; f0=0.25 puts the center frequency at f 4.

Output
ntf The modulator NTF, given as an LTI object in zero-pole form.

Bugs
If OSR or H_inf are low, the NTF is not optimal. Use synthesizeChebyshevNTF in-
stead.

Example
Fifth-order lowpass modulator; zeros optimized for an oversampling ratio of 32.
» H = synthesizeNTF(5,32,1)

Zero/pole/gain:

(z-1) (z2̂ - 1.997z + 1) (z2̂ - 1.992z + 1)

---------------------------------------

(z-0.7778) (z2̂ - 1.613z + 0.6649) (z2̂ - 1.796z + 0.8549)

Sampling time: 1

1/640

normalized frequency (1 → fs)

Pole-Zero Plot Magnitude Response
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Max. gain = 1.5 (3.5dB)
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clans

Synopsis: ntf = clans(order=4,OSR=64,Q=5,rmax=0.95,opt=0)

Synthesize a lowpass NTF using the CLANS (Closed-loop analysis of noise-shaper)
methodology [1]. This function requires the Optimization toolbox.

[1] J. G. Kenney and L. R. Carley, “Design of multibit noise-shaping data converters,"
Analog Integrated Circuits Signal Processing Journal, vol. 3, pp. 259-272, 1993.

Input
order The order of the NTF.
OSR The oversampling ratio.
Q The maximum number of quantization levels used by the fed-back quan-

tization noise. (Mathematically, Q h 1 1, i.e. the sum of the ab-
solute values of the impulse response samples minus 1.) The maximum
stable input of a modulator is guaranteed to be at least (n Q).

rmax The maximum radius for the NTF poles.
opt A flag used to request optimized NTF zeros.

Output
ntf The modulator NTF, given as an LTI object in zero-pole form.

Example
5th-order lowpass modulator; time-domain noise gain of 5, zeros optimized for OSR 32.
» H= clans(5,32,5,.95,1)
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–120

–100

–80

–60

 –40

–20

 0

 20

Pole-Zero Plot

normalized frequency (1 → fs)

Magnitude Response

 -1    0    1

 -1

   0

   1

0 1/64
-120

-110

-100

 -90

Max. gain = 3.5 (11dB)
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synthesizeChebyshevNTF

Synopsis: ntf = synthesizeChebyshevNTF(order,OSR,opt,H_inf,f0)

Obtain a noise transfer function (NTF) in which has equiripple magnitude in the passband.
synthesizeChebyshevNTF creates NTFs which are no better than synthesizeNTF,
except when OSR or H_inf are low.

Input and Output
Same as ssynthesizeNTF, except that the opt argument is not supported yet.

Examples
Compare the NTFs created by synthesizeNTF and synthesizeChebyshevNTF when
OSR is low:
» OSR = 4; order = 8; H_inf = 3;

» H1 = synthesizeNTF(order,OSR,1,H_inf);

» H3 = synthesizeChebyshevNTF(order,OSR,1,H_inf);
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–40

–20

0

Pole-Zero Plot Magnitude Response

0 0.1 0.2 0.3 0.4 0.5–1 0 1

–1

0

1

synthesizeNTF

synthesizeChebyshevNTF

rms gain -12 dB

rms gain -24 dB

Repeat for H_inf low:
» OSR = 32; order = 5; H_inf = 1.2;

» H1 = synthesizeNTF(order,OSR,1,H_inf);

» H3 = synthesizeChebyshevNTF(order,OSR,1,H_inf);

0
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–20
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simulateDSM

Synopsis: [v,xn,xmax,y] = simulateDSM(u,ABCD|ntf,nlev=2,x0=0)

Simulate a delta-sigma modulator with a given input. For maximum speed, make sure
that the compiled mex file is on your search path by typing which simulateDSM at the
MATLABTM prompt.

Input
u The input sequence to the modulator, given as a m N matrix, where m

is the number of inputs (usually 1). Note that full-scale corresponds to
an input of magnitude nlev 1.

ABCD A state-space description of the modulator loop-filter.
ntf The modulator NTF, given in zero-pole form. The modulator STF is

assumed to be unity.
nlev The number of levels in the quantizer. Multiple quantizers are indicated

by making nlev a column vector.
x0 The initial state of the modulator.

Output
v The samples of the output of the modulator, one for each input sample.
xn The internal states of the modulator, one for each input sample, given as

an n N matrix.
xmax The maximum absolute values of each state variable.
y The samples of the quantizer input, one per input sample.

Example
Simulate a 5th-order binary lowpass modulator with a half-scale sine-wave input and plot
its output in the time and frequency domains.

>> OSR = 32; H = synthesizeNTF(5,OSR,1)}
>> N = 8192; fB = ceil(N/(2*OSR));}
>> f=85; u = 0.5*sin(2*pi*f/N*[0:N-1]);}
>> v = simulateDSM(u,H);

t = 0:85;
stairs(t, u(t+1),'g');
hold on;
stairs(t,v(t+1),'b');
axis([0 85 -1.2 1.2]);
ylabel('u, v');

spec=fft(v.*ds_hann(N))/(N/4)
plot(linspace(0,0.5,N/2+1), .

dbv(spec(1:N/2+1)));
axis([0 0.5 -120 0]);
grid on;
ylabel('dBFS/NBW')
snr=calculateSNR(spec(1:fB),f
s=sprintf('SNR = %4.1fdB\n',s
text(0.25,-90,s);
s=sprintf('NBW=%7.5f',1.5/N);
text(0.25, -110, s);

sample number

normalized frequency (1 → fs)

0 10 20 30 40 50 60 70 80

0 0.1 0.2 0.3 0.4 0.5

NBW=0.00018
SNR = 82.5dB



THE DELTA-SIGMA TOOLBOX 509

simulateSNR

Synopsis: [snr,amp] = simulateSNR(ntf|ABCD|function,osr,amp,f0=0,

nlev=2,f=1/(4*OSR),k=13,quadrature=0)

Simulate a delta-sigma modulator with sine wave inputs of various amplitudes and calcu-
late the signal-to-noise ratio (SNR) in dB for each input.

Input
ntf The modulator NTF, given in zero-pole form.
ABCD A state-space description of the modulator loop-filter, or the name of a

function taking the input signal as its sole argument.
osr The oversampling ratio.
amp A row vector listing the amplitudes to use. Defaults to [-120 -110...-20

-15 -10 -9 -8 ... 0] dB, where 0 dB means a full-scale (peak value =
n_lev 1) sine wave.

f0 The center frequency of the modulator.
nlev The number of levels in the quantizer. Multiple quantizers are indicated

by making nlev a vector.
f The test frequency, adjusted to be an FFT bin.
k The number of time points used for the FFT is 2 .
quadrature A flag indicating that the system being simulated is quadrature. This flag

is set automatically if either ntf or ABCD are complex.

Output
snr A row vector containing the SNR values calculated from the simulations.
amp A row vector listing the amplitudes used.

Example
Compare the SNR versus input amplitude curve determined by the describing function
method of Ardalan and Paulos with that determined by simulation for a 5th-order modula-
tor.
» OSR = 32; H = synthesizeNTF(5,OSR,1)

» [snr_pred,amp] = predictSNR(H,OSR);

» [snr,amp] = simulateSNR(H,OSR);

plot(amp,snr_pred,'b',amp,snr,'gs');
grid on;
figureMagic([-100 0], 10, 2, ...

[0 100], 10, 1);
xlabel('Input Level, dB');
ylabel('SNR dB');
s=sprintf('peak SNR = %4.1fdB\n',...

max(snr));
text(-65,15,s);
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realizeNTF

Synopsis: [a,g,b,c] = realizeNTF(ntf,form=’CRFB’,stf=1)

Convert an NTF into a set of coefficients for a particular modulator topology.

Input
ntf The modulator NTF, given in zero-pole form (i.e. a zpk object).
form A string specifying the modulator topology.

CRFB Cascade-of-resonators, feedback form.
CRFF Cascade-of-resonators, feedforward form.
CIFB Cascade-of-integrators, feedback form.
CIFF Cascade-of-integrators, feedforward form.
---D Any of the above, but the quantizer is delaying.
Structures are described in "Modulator Model Details" on page 533.

stf The modulator STF, specified as a zpk object. Note that the poles of the
STF must match those of the NTF in order to guarantee that the STF can
be realized without the addition of extra state variables.

Output
a Feedback/feedforward coefficients from/to the quantizer (1 n).
g Resonator coefficients (1 n 2 ).
b Feed-in coefficients from the modulator input to each integrator

(1 (n 1)).
c Integrator inter-stage coefficients. (1 n). In unscaled modulators, c is

all ones.

Example
Determine the coefficients for a 5th-order modulator with the cascade-of-resonators struc-
ture, feedback (CRFB) form.

>> H = synthesizeNTF(5,32,1);}
>> [a,g,b,c] = realizeNTF(H,’CRFB’)}
a = 0.0007 0.0084 0.0550 0.2443 0.5579}
g = 0.0028 0.0079}
b = 0.0007 0.0084 0.0550 0.2443 0.5579 1.0000}
c = 1 1 1 1 1

See Also
Use realizeNTF_ct (page 516) to realize an NTF with a continuous-time loop-filter.
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stuffABCD

Synopsis: ABCD = stuffABCD(a,g,b,c,form=’CRFB’)

Calculate the ABCD matrix given the parameters of a specified modulator topology.

Input
a Feedback/feedforward coefficients from/to the quantizer.
g Resonator coefficients.
b Feed-in coefficients from the modulator input to each integrator.
c Integrator inter-stage coefficients.
form See realizeNTF on page 510 for a list of supported forms and "Sup-

ported Modulator Topologies" on page 534 for block diagrams of them.

Output

ABCD A state-space description of the loop-filter.

mapABCD

Synopsis: [a,g,b,c] = mapABCD(ABCD,form=’CRFB’)

Calculate the parameters for a specified modulator topology, assuming ABCD fits that
topology.

Input
ABCD A state-space description of the modulator loop-filter.
form See realizeNTF on page 510 for a list of supported structures.
Output
a Feedback/feedforward coefficients from/to the quantizer.
g Resonator coefficients.
b Feed-in coefficients from the modulator input to each integrator.
c Integrator inter-stage coefficients.
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scaleABCD

Synopsis: [ABCDs,umax]=scaleABCD(ABCD,nlev=2,f=0,xlim=1,ymax=nlev+5,

umax,N=1e5)

Scale the ABCD matrix so that the state maxima are less than a specified limit. The maxi-
mum stable input is determined as a side-effect of this process.

Input
ABCD A state-space description of the modulator loop-filter.
nlev The number of levels in the quantizer.
f The normalized frequency of the test sinusoid.
xlim The limit on the states. May be given as a vector.
ymax The threshold for judging modulator stability. If the quantizer input ex-

ceeds ymax, the modulator is considered to be unstable.

Output
ABCDs The scaled state-space description of the modulator loop-filter.
umax The maximum stable input. Input sinusoids with amplitudes below this

value should not cause the modulator states to exceed their specified lim-
its.



THE DELTA-SIGMA TOOLBOX 513

calculateTF

Synopsis: [ntf,stf] = calculateTF(ABCD,k=1)

Calculate the NTF and STF of a delta-sigma modulator.

Input
ABCD A state-space description of the modulator’s loop-filter.
k The quantizer gain to assume.

Output
ntf The modulator NTF, given as an LTI system in zero-pole form.
stf The modulator STF, given as an LTI system in zero-pole form.

Example
Realize a 5th-order modulator with the cascade-of-resonators structure, feedback form.
Calculate the ABCD matrix of the loop-filter and verify that the NTF and STF are correct.

>> H = synthesizeNTF(5,32,1)
Zero/pole/gain:
(z-1) (z^2 - 1.997z + 1) (z^2 - 1.992z + 1)
----------------------------------------------------------
(z-0.7778) (z^2 - 1.613z + 0.6649) (z^2 - 1.796z + 0.8549)
Sampling time: 1

>> [a,g,b,c] = realizeNTF(H)
a = 0.0007 0.0084 0.0550 0.2443 0.5579
g = 0.0028 0.0079
b = 0.0007 0.0084 0.0550 0.2443 0.5579 1.0000
c = 1 1 1 1 1

>> ABCD = stuffABCD(a,g,b,c)
ABCD =
1.0000 0 0 0 0 0.0007 -0.0007
1.0000 1.0000 -0.0028 0 0 0.0084 -0.0084
1.0000 1.0000 0.9972 0 0 0.0633 -0.0633

0 0 1.0000 1.0000 -0.0079 0.2443 -0.2443
0 0 1.0000 1.0000 0.9921 0.8023 -0.8023
0 0 0 0 1.0000 1.0000 0

>> [ntf,stf] = calculateTF(ABCD)
Zero/pole/gain:
(z-1) (z^2 - 1.997z + 1) (z^2 - 1.992z + 1)
----------------------------------------------------------
(z-0.7778) (z^2 - 1.613z + 0.6649) (z^2 - 1.796z + 0.8549)
Sampling time: 1

Zero/pole/gain:
1
Static gain.
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simulateMS

Synopsis: [sv,sx,sigma_se,max_sx,max_sy]

= simulateMS(v,M=16,mtf,d=0,dw=[1,1,...],sx0=[0-])

Simulate the element selection logic of a mismatch-shaping DAC.

Input
v The DAC input. v must be in -M:2:M if d [1 1 ]. For other d ,

must be in the range [ d (i) d (i)].
M The number of DAC elements.
mtf The mismatch-shaping transfer function, given in zero-pole form.
d Dither uniformly distributed in [ d d] is added to the s input of the

vector quantizer.
dw A vector containing the nominal weight associated with each element.
sx0 An n M matrix containing the initial state of the element selection logic.

n is the order of mtf.

Output
sv The selection vector: a vector of zeros and ones indicating which ele-

ments to enable.
sx An n M matrix containing the final state of the element selection logic.
sigma_se The rms value of the selection error, se s s . sigma_se may

be used to analytically estimate the power of in-band noise caused by
element mismatch.

max_sx The maximum value attained by any state in the ESL.
max_sy The maximum value attained by any component of the (un-normalized)

“desired usage" vector s .

See Also
simulateTSMS, simulateBiDWA, simulateXS and simulateMXS.

MTF -1

quantizer
su vector

-min()

sv

sy

se

Block diagram of the Element Selection Logic

M

v

Compare the usage patterns and example spectra for a 16-element DAC driven with
thermometer-coded, 1st-order and 2nd-order mismatch-shaped data generated by a 3rd-
order modulator.

ntf = synthesizeNTF(3,[],[],4);
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M = 16;
N = 2^14;
fin = round(0.33*N/(2*12));
u = M/sqrt(2)*sin((2*pi/N)*fin*[0:N-1]);
v = simulateDSM(u,ntf,M+1);
sv0 = ds_therm(v,M);
mtf1 = zpk(1,0,1,1); % First-order shaping
sv1 = simulateMS(v,mtf1,M);
mtf2 = zpk([ 1 1 ], [ 0 0 ], 1, 1); % Second-order shaping
sv2 = simulateMS(v,mtf2,M);
ue = 1 + 0.01*randn(M,1); % 1% mismatch
dv0 = ue’ * sv0;
spec0 = fft(dv0.*ds_hann(N))/(M*N/8);
plotSpectrum(spec0,fin,’g’);
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realizeNTF_ct

Synopsis: [ABCDc,tdac2] = realizeNTF_ct(ntf,form=’FB’ ,tdac=[0 1],

ordering=[1:n],bp=zeros(-),ABCDc)

Realize a noise transfer function (NTF) with a continuous-time loop-filter.

Input
ntf The modulator NTF, specified as an LTI object in zero-pole form.
form A string specifying the modulator topology.

FB Feedback form.
FF Feedforward form.

tdac The timing for the feedback DAC(s). If tdac(1) 1, direct feedback
terms are added to the quantizer. Multiple timings (one or more per inte-
grator) for the FB topology can be specified by making tdac a cell array,
e.g.
tdac = {[1,2]; [1 2]; [0.5 1],[1 1.5]; [];}

ordering A vector specifying which NTF zero-pair to use in each resonator. De-
fault is for the zero-pairs to be used in the order specified in the NTF.

bp A vector specifying which resonator sections are bandpass. The default
(zeros(...)) is for all sections to be lowpass.

ABCDc The loop-filter structure, in state-space form. If this argument is omitted,
ABCDc is constructed according to form.

Output
ABCDc A state-space description of the CT loop-filter.
tdac2 A matrix with the DAC timings, one for each input, including ones that

were automatically added.

Example
Realize the NTF with a CT system (cf. the example on page 517).

>> ntf = zpk([1 1],[0 0],1,1);
>> [ABCDc,tdac2] = realizeNTF_ct(ntf,’FB’)

ABCDc =
0 0 1.0000 -1.0000

1.0000 0 0 -1.5000
0 1.0000 0 0.0000

tdac2 =
-1 -1
0 1
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mapCtoD

Synopsis: [sys, Gp] = mapCtoD(sys_c,t=[0 1],f0=0)

Map a MIMO continuous-time system to a SIMO discrete-time equivalent. The criterion
for equivalence is that the sampled pulse response of the CT system must be identical to
the impulse response of the DT system. I.e. if is the output of the CT system with an
input taken from a set of DACs fed with a single DT input , then , the output of the
equivalent DT system with input satisfies [n] (n ) for integer n. The DACs are
characterized by rectangular impulse responses with edge times specified in the t matrix.

Input
sys_c The LTI description of the CT system.
t The edge times of the DAC pulse used to make CT waveforms from DT

inputs. Each row corresponds to one of the system inputs; [-1 -1]

denotes a CT input. The default is [0 1] for all inputs except the first,
which is assumed to be a CT input.

f0 The frequency for which the Gp filters’ gains are to be set to unity. De-
fault 0 (DC).

Output
sys The LTI description for the DT equivalent.
Gp The mixed CT/DT prefilters which form the samples fed to each state for

the CT inputs.

Reference
R. Schreier and B. Zhang, “Delta-sigma modulators employing continuous-time circuitry,"
IEEE Transactions on Circuits and Systems I, vol. 43, no. 4, pp. 324-332, April 1996.

Example
Map the standard second-order CT modulator shown below to its DT equivalent and verify
that the NTF is (1 z 1)2.

–1.5–1

Quc v∫ ∫ (clocked)

x1c
˙

x2c
˙

yc

0 0 1 1–

1 0 0 1.5–

0 1 0 0

x1c
˙

x2c
˙

uc

vc

=

DAC
vc

>> LFc = ss([0 0;1 0], [1 -1;0 -1.5], [0 1], [0 0]);
>> tdac = [0 1];
>> [LF,Gp] = mapCtoD(LFc,tdac);
>> ABCD = [LF.a LF.b; LF.c LF.d];
>> H = calculateTF(ABCD)

Zero/pole/gain:
(z-1)^2
-------
z^2

Sampling time: 1
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evalTFP

Synopsis: H = evalTFP(Hs,Hz,f)

Use this function to evaluate the signal transfer function of a continuous-time (CT) system.
In this context Hs is the open-loop response of the loop-filter from the u input and Hz is the
closed-loop noise transfer function.

Input
Hs A continuous-time transfer function in zpk form.
Hz A discrete-time transfer function in zpk form.
f A vector of frequencies.

Output
H The value of H ( j2 f )H (e 2 ).

See Also
evalMixedTF is a more advanced version of this function which is used to evaluate the
individual feed-in transfer functions of a CT modulator.

Example
Plot the STF of the 2nd-order CT system depicted on page 517.

Ac = [0 0; 1 0];
Bc = [1 -1; 0 -1.5];
Cc = [0 1];
Dc = [0 0];
LFc = ss(Ac, Bc, Cc, Dc);
L0c = zpk(ss(Ac,Bc(:,1),Cc,Dc(1)));
tdac = [0 1];
[LF,Gp] = mapCtoD(LFc,tdac);
ABCD = [LF.a LF.b; LF.c LF.d];
H = calculateTF(ABCD);
% Yields H=(1-z^-1)^2
f = linspace(0,2,300);
STF = evalTFP(L0c,H,f);
plot(f,dbv(STF));
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synthesizeQNTF

Synopsis: ntf = synthesizeQNTF(order=3,OSR=64,f0=0,f0=-60,ING=-20,

n_im=order/3)

Synthesize a noise transfer function (NTF) for a quadrature delta-sigma modulator.

Input
order The order of the NTF.
OSR The oversampling ratio.
f0 The center frequency of the modulator.
NG The rms in-band noise gain (dB).
ING The rms image-band noise gain (dB).
n_im Number of image-band zeros.

Output
ntf The modulator NTF, given as an LTI object in zero-pole form.

Bugs
ALPHA VERSION. This function uses an experimental ad hoc method that is neither op-
timal nor robust.

Example
Fourth-order, OSR 32, f0 1 16, bandpass NTF with an rms in-band noise gain of

50 dB and an image-band noise gain of 10 dB.

>> ntf = synthesizeQNTF(4,32,1/16,-50,-10);

Zero/pole/gain:

(z-(0.953+0.303i)) (z^2 - 1.85z + 1) (z-(0.888+0.460i))
---------------------------------------------------------------------------
(z-(0.809+0.003i)) (z-(0.591+0.245i)) (z-(0.673-0.279i)) (z-(0.574+0.570i))

Sampling time: 1
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simulateQDSM

Synopsis: [v,xn,xmax,y] = simulateQDSM(u,ABCD|ntf,nlev=2,x0=0)

Simulate a quadrature delta-sigma modulator with a given input. For improved simula-
tion speed, use simulateDSM with a 2-input/2-output ABCDr argument as indicated in the
example in mapQtoR on page 522.

Input
u The input sequence to the modulator, given as a 1 N row vector. Full-

scale corresponds to an input of magnitude nle 1.
ABCD A state-space description of the modulator’s loop-filter.
ntf The modulator NTF, given in zero-pole form.
nlev The number of levels in the quantizer. Multiple quantizers are indicated

by making nlev a column vector.
x0 The initial state of the modulator.

Output
v The samples of the output of the modulator, one for each input sample.
xn The internal states of the modulator, one for each input sample, given as

an n N matrix.
xmax The maximum absolute values of each state variable.
y The samples of the quantizer input, one per input sample.

Example
Simulate a 4th-order 9-level quadrature modulator with a half-scale sine-wave input and
plot its output in the time and frequency domains.

nlev = 9; f0 = 1/16; osr = 32; M = nlev-1;
ntf = synthesizeQNTF(4,osr,f0,-50,-10);
N = 64*osr; f = round((f0+0.3*0.5/osr)*N)/N;
u = 0.5*M*exp(2i*pi*f*[0:N-1]);
v = simulateQDSM(u,ntf,nlev);
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t = 0:25;
subplot(211)
plot(t, real(u(t+1)),'g');
hold on;
stairs(t,real(v(t+1)),'b');
figureMagic(…)
ylabel('real');

spec = fft(v.*ds_hann(N))/(M*N/2);
spec = [fftshift(spec) spec(N/2+1)];
plot(linspace(-0.5,0.5,N+1), dbv(spec))
figureMagic([-0.5 0.5],1/16,2, [-120 0],10
ylabel('dBFS/NBW')
[f1 f2] = ds_f1f2(osr,f0,1);
fb1 = round(f1*N); fb2 = round(f2*N);
fb = round(f*N)-fb1;
snr = calculateSNR(spec(N/2+1+[fb1:fb2]),f
text(f,-10,sprintf(' SNR = %4.1fdB\n',snr)
text(0.25, -105, sprintf('NBW=%0.1e',1.5/N
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realizeQNTF

Synopsis: ABCD = realizeQNTF(ntf,form=’FB’,rot=0,bn)

Convert a quadrature NTF into an ABCD matrix for the specified structure.

Input
ntf A zpk object specifying the modulator’s NTF.
form A string specifying the modulator topology.

FB Feedback
PFB Parallel feedback
FF Feedforward
PFF Parallel feedforward

rot rot=1 means rotate states to make as many coefficients as possible real.
bn The coefficient of the auxiliary DAC for form = ’FF’.

Output
ABCD State-space description of the loop-filter.

Example
Determine coefficients for the parallel feedback (PFB) structure.

>> ntf = synthesizeQNTF(5,32,1/16,-50,-10);
>> ABCD = realizeQNTF(ntf,’PFB’,1)
ABCD =
Columns 1 through 4
0.8854+0.4648i 0 0 0
0.0065+1.0000i 0.9547+0.2974i 0 0

0 0.9715+0.2370i 0.9088+0.4171i 0
0 0 0.8797+0.4755i 0.9376+0.3477i
0 0 0 0
0 0 0 -0.9916-0.1294i

Columns 5 through 7
0 0.0025 0.0025+0.0000i
0 0 0.0262+0.0000i
0 0 0.1791+0.0000i
0 0 0.6341+0.0000i

0.9239-0.3827i 0 0.1743+0.0000i
-0.9312-0.3645i 0 0
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mapQtoR

Synopsis: ABCDr = mapQtoR(ABCD)

Convert a quadrature matrix into its real (IQ) equivalent.

Input
ABCD A complex matrix describing a quadrature system.

Output
ABCDr A real matrix corresponding to ABCD. Each element z in ABCD is re-

placed by a 2 2 matrix to make ABCDr. Specifically

z
x

x
where x Re(z) and Im(z)

Example
Replace a call to simulateQDSM with a faster code block using simulateDSM.

% v = simulateQDSM(u,ntf,nlev);
ABCD = realizeQNTF(ntf,’FF’);
ABCDr = mapQtoR(ABCD);
ur = [real(u); imag(u)];
vr=simulateDSM(ur,ABCDr,nlev*[1;1]);
v = vr(1,:) + 1i*vr(2,:);

mapRtoQ

Synopsis: [ABCDq ABCDp] = mapR2Q(ABCDr)

Map a real ABCDr to a quadrature ABCD. ABCDr has its states paired (real, imaginary) as
indicated above in mapQtoR.

Input
ABCDr A real matrix describing a quadrature system.

Output
ABCDq The quadrature (complex) version of ABCDr.
ABCDp The mirror-image system matrix. ABCDp is zero if ABCDr has no quadra-

ture errors.
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calculateQTF

Synopsis: [ntf stf intf istf] = calculateQTF(ABCDr)

Calculate the noise and signal transfer functions for a quadrature modulator.

Input
ABCDr A real state-space description of the modulator’s loop-filter. I/Q asym-

metries may be included in the description. These asymmetries result in
non-zero image transfer functions.

Output
ntf, stf The noise and signal transfer functions.
intf, istf The image noise and image signal transfer functions.

All transfer functions are returned as LTI systems in zero-pole form.

Example
Examine the effect of mismatch in the first feedback.

>> ABCDr = mapQtoR(ABCD);
>> ABCDr(2,end) = 1.01*ABCDr(2,end); % 0.1% mismatch in first feedback
>> [H G HI GI] = calculateQTF(ABCDr);
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simulateQESL

Synopsis: [sv,sx,sigma_se,max_sx,max_sy]

= simulateQESL(v,mtf,M=16,sx0=[0-])

Simulate the element selection logic (ESL) of a quadrature differential DAC.

Input
v A vector the digital input values.
mtf The mismatch-shaping transfer function, given in zero-pole form.
M The number of elements. There is a total 2M elements.
sx0 An n M matrix whose columns are the initial state of the ESL.

Output
sv The selection vector: a vector of zeros and ones indicating which ele-

ments to enable.
sx An n M matrix containing the final state of the ESL.
sigma_se The rms value of the selection error, se s s . sigma_se may be

used to estimate the power of in-band noise caused by element mismatch.
max_sx The maximum absolute value attained by any state in the ESL.
max_sy The maximum absolute value attained by any input to the VQ.

Example

>> mtf1 = zpk(exp(2i*pi*f0),0,1,1);
% First-order complex shaping
>> sv1 = simulateQESL(v,mtf1,M);
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designHBF

Synopsis: [f1,f2,info]=designHBF(fp=0.2,delta=1e-5,debug=0)

Design a hardware-efficient linear-phase half-band filter for use in the decimation or inter-
polation filter associated with a delta-sigma modulator. This function is based on the pro-
cedure described by Saramäki [1]. Note that since the algorithm uses a non-deterministic
search procedure, successive calls may yield different designs.

[1] T. Saramäki, “Design of FIR filters as a tapped cascaded interconnection of identical
subfilters," IEEE Transactions on Circuits and Systems, vol. 34, pp. 1011-1029, 1987.

Input
fp Normalized passband cutoff frequency.
delta Passband and stopband ripple in absolute value.

Output
f1,f2 Prototype filter and subfilter coefficients and their canonical-signed digit

(csd) representation.
info A vector containing the following information data (only set when

debug=1):
complexity The number of additions per output sample.
n1,n2 The length of the f1 and f2 vectors.
sbr The achieved stop-band attenuation in dB.
phi The scaling factor for the F2 filter.

Example
Design of a lowpass half-band filter with a cut-off frequency of 0 2 f , a passband ripple of
less than 10 5 and a stopband gain less than 10 5 ( 100 dB).

>> [f1,f2] = designHBF(0.2,1e-5);
>> f = linspace(0,0.5,1024);
>> plot(f, dbv(frespHBF(f,f1,f2)))

A plot of the filter response is shown below. The filter achieves 109 dB of attenuation in
the stopband and uses only 124 additions (no true multiplications) to produce each output
sample.
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The structure of this filter as a decimation or interpolation filter is shown below. The
coefficients and their canonical signed-digit (csd) decompositions are

[f1.val]’ = [f2.val]’ = >> f1.csd >> f2.csd
0.9453 0.6211 ans = ans =

-0.6406 -0.1895 0 -4 -7 -1 -3 -8
0.1953 0.0957 1 -1 1 1 1 -1

-0.0508 ans = ans =
0.0269 -1 -3 -6 -2 -4 -9
-0.0142 -1 -1 -1 -1 1 -1

ans = ans =
-2 -4 -7 -3 -5 -9
1 -1 1 1 -1 1

ans =
-4 -7 -8
-1 1 1

ans =
-5 -8 -11
1 -1 -1

ans =
-6 -9 -11
-1 1 -1

In the csd expansions, the first row contains the powers of two while the second row gives
their signs. For example, f1(1) 0 9453 20 2 4 2 7. Since the filter coefficients use
only 3 csd terms, each multiply-accumulate operation shown in the diagram below needs
only 3 additions. An implementation of this 110th-order FIR filter therefore needs only
3 3 5 (3 6 6 1) 124 additions at the low ( f 2) rate.

F2 F2 F2

z-6 z-11

IN

Decimation structure.

F2 F2

z-11 OUT
@fs

@fs/2

f1(1) f1(2) f1(3)

z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1 z-1

f2(6) f2(5) f2(4) f2(3) f2(2) f2(1)

z-6z-11

OUT

Interpolation structure.

F2

IN
@fs/2

f1(1)

F2 filter.

IN

OUT

@fs

F2

z-11

F2

f1(2)

F2F2

f1(3)

0.5

2



THE DELTA-SIGMA TOOLBOX 527

simulateHBF

Synopsis: y = simulateHBF(x,f1,f2,mode=0)

Simulate a Saramäki half-band filter (see designHBF on page 525) in the time domain.

Input
x The input data.
f1,f2 Filter coefficients. f1 and f2 can be vectors of values or struct arrays

like those returned from designHBF.
mode This flag determines whether the input is filtered, interpolated, or deci-

mated according to the following:
0 Plain filtering, no interpolation or decimation.
1 The input is interpolated.
2 The output is decimated, even samples are taken.
3 The output is decimated, odd samples are taken.

Output
y The output data.

Example
Plot the impulse response of the HBF designed on the previous page.

>> N = (2*length(f1)-1)*2*(2*length(f2)-1)+1;
>> y = simulateHBF([1 zeros(1,N-1)],f1,f2);
>> stem([0:N-1],y);
>> figureMagic([0 N-1],5,2, [-0.2 0.5],0.1,1)
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designPBF

Synopsis: [C, e, x0] = designPBF(N,M,pb,pbr,sbr,ncd,np,ns,fmax)

Design a symmetric polynomial-based filter (PBF) according to Hunter’s method [1].
designPBF requires the Optimization toolbox.

[1] M. T. Hunter, “Design of polynomial-based filters for continuously variable sample
rate conversion with applications in synthetic instrumentation and software defined radio,"
Ph.D. thesis, University of Florida, 2008.

Input
N=10 Number of polynomial pieces.
M=5 Order of the polynomial pieces.
pb=0.25 Passband width. Relative to the input sample rate, the passband is [0 ]

and the stopband is [1 ). Use pb = 0.5/OSR where OSR is the
oversampling ratio of the input.

pbr=0.1 Passband ripple in dB.
sbr=-100 Stobpand ripple in dB.
ncd=0 Number of continuous derivatives. To allow the impulse response itself

to be discontinuous, use ncd = -1.
np=100 Number of points in the passband.
ns=1000 Number of points in the stopband.
fmax=5 Maximum frequency checked in the stopband.

Output
C ( 1) matrix containing the coefficients of the polynomial pieces.

Piece i is p (x) C(i 1) C(i 2)x C(i 3)x2 C(i M 1)x .
e The maximum weighted error. 1 indicates the specs were met.
x0=-0.5 Offset on the polynomial argument, i.e. x , where [0 1].

Example
Construct a 10-segment PBF using polynomials of order 5 for interpolating signals with an
input OSR of 2. Aim for a passband ripple of 0.1 dB and a stopband ripple of 100 dB.

[C, e, x0] = designPBF(10, 5, 0.5/2, 0.1, -100);
[hc, t] = impulsePBF(C,20,x0);
subplot(121); plot(t, hc, ’Linewidth’, 1);
f = linspace(0,5,1000);
Hc = frespPBF(f,C,x0);
subplot(122); plot(f, dbv(Hc), ’Linewidth’, 1);
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predictSNR

Synopsis: [snr,amp,k0,k1,sigma_e2] = predictSNR(ntf,OSR=64,amp=...,f0=0)

Use the describing function method of Ardalan and Paulos [1] to predict the signal-to-noise
ratio (SNR) in dB for various input amplitudes. This method is only applicable to binary
modulators.

[1] S. H. Ardalan and J. J. Paulos, “Analysis of nonlinear behavior in delta-sigma modula-
tors," IEEE Transactions on Circuits and Systems, vol. 34, pp. 593-603, June 1987.

Input
ntf The modulator NTF, given in zero-pole form.
OSR The oversampling ratio.
amp A row vector listing the amplitudes to use. amp defaults to

[ 120 110 20 15 10 9 8 0 ] dB, where 0 dB means a full-
scale (peak value = 1) sine wave.

f0 The center frequency of the modulator.

Output
snr A row vector containing the predicted SNRs
amp A row vector listing the amplitudes used.
k0 A row vector containing the signal gain of the quantizer model.
k1 A row vector containing the noise gain of the quantizer model.
sigma_e2 A row vector containing the mean square value of the noise in the quan-

tizer model.

Example
See the example on page 509.

The Quantizer Model
The binary quantizer is modeled as a pair of linear gains and a noise source, as shown in
the figure below. The input to the quantizer is divided into signal and noise components
which are processed by signal-dependent gains k0 and k1. These components are added to
a noise source, which is assumed to be white and to have a Gaussian distribution to produce
the quantizer output. The variance 2 of the noise source is also signal-dependent.

variance σe
2

y sgn() y1

y0

v
k1

k0 v

e: AWGN with

y
“signal”

“noise”
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findPIS, find2dPIS (in the PosInvSet subdirectory)

Synopsis: [s,e,n,o,Sc] = findPIS(u,ABCD,nlev=2,options)

[s,e,n,o,Sc] = findPIS(u,ABCD,nlev=2,options)

options = [dbg=0 itnLimit=2000 expFactor=0.005 N=1000 skip=100]

Find a convex positively-invariant set for a delta-sigma modulator. findPIS requires com-
pilation of the qhullmex file; find2dPIS does not but is limited to second-order systems.

This function is an implementation of the method described in [1]

Input
u The input to the modulator. If u is a scalar, the input to the modulator is

constant. If u is a 2 1 vector, the input to the modulator may be any
sequence whose samples lie in the range [u(1) u(2)].

ABCD A state-space description of the modulator loop-filter.
nlev The number of quantizer levels.
dbg Set dbg=1 to see a graphical display of the iterations.
itnLimit The maximum number of iterations.
expFactor The expansion factor applied to the hull before every mapping operation.

Increasing expFactor decreases the number of iterations but results in
sets which are inflated.

N The number of points to use when constructing the initial guess.
skip The number of time steps to run the modulator before observing the state.

This handles the possibility of transients in the modulator.
qhullArgA The ‘A’ argument to the qhull program. Adjacent facets are merged if

the cosine of the angle between their normals is greater than the absolute
value of this parameter. Negative values imply that the merge operation
is performed during hull construction, rather than as a post-processing
step.

qhullArgC The ‘C’ argument to the qhull program. A facet is merged into its
neighbor if the distance between the facet’s centrum (the average of the
facet’s vertices) and the neighboring hyperplane is less than the absolute
value of this parameter. As with the above argument, negative values
imply pre-merging while positive values imply post-merging.

Output
s The vertices of the set (dim n ).
e The edges of the set, listed as pairs of vertex indices (2 n ).
n The normals for the facets of the set (dim n ).
o The offsets for the facets of the set (1 n ).
Sc The scaling matrix which was used internally to round out the set.

Find a positively-invariant set for the second-order modulator with an input of 1 7.

>> ABCD = [
1 0 1 -1
1 1 1 -2
0 1 0 0];
>> s = find2dPIS(sqrt(1/7),ABCD,1)

[1] R. Schreier, M. Goodson and B. Zhang “An algorithm for computing convex positively invariant sets for
delta-sigma modulators," IEEE Transactions on Circuits and Systems I, vol. 44, no. 1, pp. 38-44, January 1997.
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s =
Columns 1 through 7
-1.5954 -0.2150 1.1700 2.3324 1.7129 1.0904 0.4672
-2.6019 -1.8209 0.3498 3.3359 4.0550 4.1511 3.6277
Columns 8 through 11
-0.1582 -0.7865 -1.4205 -1.5954
2.4785 0.6954 -1.7462 -2.6019

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5

–3

–2

–1

0

1
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Iteration 29: 0 image vertices outside
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findPattern

Synopsis: [data, snr] = findPattern(N=1024,OSR=64,ntf,ftest,Atest,

f0=0,nlev=2,quadrature=0,dbg=0)

Use delta-sigma modulation to create a length-N data-stream that has good spectral prop-
erties when repeated.

Input
N The length of the data record.
OSR The oversampling ratio.
NTF The modulator NTF.
ftest The signal frequency. ftest may be a vector.
Atest The target output level as a fraction of full-scale.
f0 The center frequency.
nlev The number of levels in the output data.
quadrature A flag which indicates to use quadrature modulation.
dbg A flag which enables showing the progress of the iterations.

Output
data 1 N data record.
snr The in-band signal-to-noise ratio, in dB.

Example
Length-1024 data record containing a 3-dBFS, 5-cycle sine wave with low in-band noise
for an oversampling ratio of 32.

N = 1024;
osr = 32;
ntf = synthesizeNTF(5,osr,1,1.5);
ftest = 5/N;
Atest = undbv(-3);
[data snr] = findPattern(N,osr,ntf,ftest,Atest);
spec = fft(data)/(N/2);
inband = 0:ceil(N/(2*osr));
lollipop(inband,dbv(spec(inband+1)),’b’,2,-120);

0 5 10 15
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−100

−80

−60

−40

−20

0

FFT bin number

|F
F

T
| (

dB
)

  SNR = 84.2 dB
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Modulator Model

A delta-sigma modulator with a single quantizer is assumed to consist of quantizer con-
nected to a loop-filter as shown in the diagram below.

G
H

H-1
H

Quantizer

U

V(z)=G(z)U(z)+H(z)E(z)Y

E

Loop Filter

L0=

L1=

The Loop Filter

The loop-filter is described by an ABCD matrix. For single-quantizer systems, the loop-
filter is a two-input, one-output linear system and ABCD is an (n 1) (n 2) matrix,
partitioned into A (n n), B (n 2), C (1 n) and D (1 2) sub-matrices as shown below:

ABCD
A B

C D
(B.1)

The equations for updating the state and computing the output of the loop-filter are

x[n 1] Ax[n] B
u[n]
[n]

[n] Cx[n] D
u[n]
[n] (B.2)

This formulation is sufficiently general to encompass all single-quantizer modulators that
employ linear loop-filters. The toolbox currently supports translation to/from an ABCD
description and coefficients for the following topologies:

CIFB Cascade-of-integrators, feedback form.
CIFF Cascade-of-integrators, feedforward form.
CRFB Cascade-of-resonators, feedback form.
CRFF Cascade-of-resonators, feedforward form.
CRFBD Cascade-of-resonators, feedback form, delaying quantizer.
CRFFD Cascade-of-resonators, feedforward form, delaying quantizer
Stratos A CIFF-like structure supporting NTF zeros on the unit circle (Jeff Gealow)
DSFB Double-sampled, feedback (Dan Senderowicz)

Multi-input and multi-quantizer systems can also be described with an ABCD matrix and
Eq. (B.2) will still apply. For an n -input, n -output modulator, the dimensions of the
sub-matrices are A : n n, B : n (n n ), C : n n and D : n (n n ).
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The Quantizer

The quantizer is ideal, producing integer outputs centered about zero. Quantizers with an
even number of levels are of the mid-rise type and produce outputs which are odd integers.
Quantizers with an odd number of levels are of the mid-tread type and produce outputs
which are even integers.

y1

2

nlev−1

4 nlev-4−nlev

3

v

−(nlev−1)

-3

y
2

1

nlev−1

3 nlev-3−nlev

4

v

−(nlev−1)

-1 5-5

-4

Transfer curve of a quantizer with an
even number of levels.

Transfer curve of a quantizer with an
odd number of levels.
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APPENDIX C

LINEAR PERIODICALLY TIME-VARYING

SYSTEMS

We first review notions of linearity and time (in)variance. We then discuss an important
class of systems called linear periodically time-varying (LPTV) systems, and some of their
properties. It turns out that LPTV systems are very relevant in our journey to the world.

C.1 Linearity and Time (In)variance

Assume that an initially relaxed system (all initial conditions are zero), yields outputs 1(t)
and 2(t) when excited by x1(t) and x2(t), respectively. The system is linear if it obeys
superposition; namely, an input x1(t) x2(t) yields the output 1(t) 2(t).

x1(t) 1(t)
x2(t) 2(t)

x1(t) x2(t) 1(t) 2(t)
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A system is linear and time-invariant (LTI) if, in addition to the constraints above,
delaying the input by results in an output that is also delayed by . That is,

x1(t ) 1(t ) (C.1)

An LTI system is characterized by its impulse response h(t), that is the output of the ini-
tially relaxed system for an input (t). Due to time invariance, h(t) can also be interpreted
as the response observed at an arbitrary time t1 due to an impulse applied at a time t before
the time of observation, namely, at time (t1 t).

x(t)

t0

x(t ) d

Figure C.1 Response of an LTI system at time t to an input x(t).

How does the system respond to an arbitrary input x(t)? To determine this, we express
the input as a sum of slivers with width d and height x(t ), as shown in Figure C.1.
The response at time t due to the sliver is given by x(t ) d h( ). The output due to
x(t) can thus be obtained by summing the response due to all the slivers, and this is given
by the familiar convolution integral

(t)
0

x(t ) d

size of impulse

applied at ( )

h( )
response to impulse

applied earlier

0
h( )x(t ) d (C.2)

A complex exponential is especially significant in the study of linear systems. When
the LTI system is excited by x(t) e 2 , using the convolution integral above yields

(t)
0

h( )e 2 ( ) d e 2

0
h( )e 2 d

( )

(C.3)

It is thus seen that the output of an LTI system, when excited by a complex exponential, is
simply a scaled version of the input. The “gain”, which depends on the frequency of the
input, is the complex number H ( f ).

As seen above, H ( f ) is the Fourier transform of the impulse response h(t), and it can
be thought of in the following way [1]:

H ( f )
Response to e 2

e 2 (C.4)

Thus, a complex exponential at frequency f results in a steady-state output that is the input
scaled by a complex number H ( f ). Conversely, if the output of an LTI system happens to
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be a complex sinusoid at frequency f , it must follow that the input is also a sinusoid at f .
In a circuit simulator, the frequency response H ( f ) is obtained by running a .AC analysis.

Many networks used in practice are nonlinear. Further, they are often used around
a time-invariant operating point, with the inputs themselves being called small signals.
When linearized about a time-invariant operating point, the nonlinear network results in a
time-invariant linear network. In a circuit simulator, the small-signal frequency response
is obtained, therefore, by first running a .OP analysis, that yields the operating point and
the small-signal LTI network, after that a .AC analysis is performed.

C.2 Linear Time-Varying Systems

x(t) (t)

(t)

Figure C.2 An example of a linear system that is time varying.

Figure C.2 shows an example of a system whose gain varies with time. It is linear
since

x1(t) (t)x1(t)
x2(t) (t)x2(t)

x1(t) x2(t) (t)( x1(t) x2(t))

However, it is not time-invariant:

x1(t) (t)x1(t)
x1(t t1) (t)x1(t t1) (t t1)x1(t t1) (C.5)

Such systems are best described as being linear time-varying (LTV). As in the LTI
case, an LTV system is characterized by an impulse response – however, as the reader may
well know, this impulse response depends on the time at that the input impulse is applied.
The response of an LTV system at a time t, due to an impulse applied at a time t , is
denoted by h(t ): .

Impulse response h( t

time of

observation

impulse applied before

time of observation

) (C.6)

To reiterate, the first variable in the impulse response denotes the time of observation.
The second variable indicates that the system was excited by an impulse launched at a time

before the time of observation.

Recall that in an LTI system, the output of the system at when it is excited by an impulse at is simply
( ).
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Thus, the response of an LTV system not only depends on how long before the obser-
vation time it was excited by the impulse but also on the time of observation. Contrast this
to an LTI system, whose response depends only on how long before the observation time it
was excited by the impulse. An LTI system, therefore, can be thought of as a special case
of an LTV system whose impulse response satisfies h(t ) h( ).

Input

h (t1)

h (t1)

(t)

(t t2)

h(t1 t1)

h(t1 t2 t1)

t2

t1
t

t

t

t

t

t
t1 t2

t1

t1 t2

(a)

(b)

LTI LTV

Figure C.3 Impulse responses of LTI and LTV systems.

The responses of LTI and LTV systems to impulse excitations are illustrated in Fig-
ure C.3. Part (a) of the figure shows the responses of example LTI and LTV systems to
an impulse applied at t 0. The output of the former is h (t), where h is the impulse
response. At an observation time t1, the output is h (t1).

The output of the LTV system is given by h(t t), where h denotes the impulse re-
sponse. When observed at a time t1, the output is h(t1 t1). This is to be interpreted as the
output at t1 due to an impulse applied t1 prior to the time of observation – that is, the input
is (t (t1 t1)) (t).

When the input is delayed by t2, as shown in Figure C.3(b), the output of the LTI
system is given by h (t t2). Thus, if the time of observation moves by t2 to t1 t2, the
output remains h (t1 t2 t2) h (t1). What happens in the LTV case? When observed
at t1 t2, the output is seen to be h(t1 t2 t1). This is not (necessarily) equal to h(t1 t1),
since the output of an LTV system not only depends on the difference between the times
of observation and excitation but also on the absolute time at that the output is observed.

How does an LTV system respond to the complex sinusoid x(t) e 2 ? Proceeding
as we did in the LTI case, we obtain

(t)
0

h(t )e 2 ( ) d e 2

0
h(t )e 2 d

( )

(C.7)

We see that, as in the time-invariant case, the input sinusoid is scaled by a complex number
H ( f t). However the “gain” experienced by the sinusoid is not only a function of its
frequency (as in the LTI case) but also a function of time. This makes sense, since the
system is varying with time. Further, we note that the (time-varying) frequency response
can be interpreted, as in the time-invariant case, as

H ( f t)
Response to e 2

e 2 (C.8)
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C.3 Linear Periodically Time-Varying (LPTV) Systems

x(t) (t)

(t)

(t) (t T )

Figure C.4 An example of a linear system that is periodically time varying.

Consider now the system shown in Figure C.4, where the gain (t) varies periodically
with time, meaning (t) (t T ). This is an example of a linear periodically time-
varying (LPTV) system. It is a special case of an LTV system whose impulse response
satisfies

h(t ) h(t T ) (C.9)

In other words, the shape of the response remains unchanged if the time of observation of
the output (t) and the time at that the system is excited (t1) are both shifted by T . T , that
is a characteristic of the system, is called the period of the LPTV system.

Input
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h (t1 t2 t1)

(t)

(t t2)

h(t1 t1)

h(t1 t2 t1)
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t
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t
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t1 t2

(a)
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LTV LPTV

(t T )

T

(c)
t

t1 T t1 T
t

h (t1 T t1) h (t1 T t1)

Figure C.5 Impulse responses of LTV and LTPV systems.

Figure C.5 compares the responses of LTV and LPTV systems when excited by im-
pulses. In the LPTV case, we see that the output, when the system is excited by an impulse
delayed in time by “this special” T , is simply a time-delayed version of the response ob-
tained when the impulsive input occurs at t 0. In fact, if one only considers the first and
third rows of Figure C.5, the LPTV system could be mistaken to be a time-invariant one!
In that sense, an LPTV system can be considered to be “closer” to an LTI system than to a
time-varying one.

How does an LPTV system respond to an an input x(t) e 2 ? From (C.7), we see
that the output is given by

(t) H ( f t)e 2
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Since (C.9) holds, we observe that

H ( f t)
0

h(t )e 2 d

0
h(t T )e 2 d

H ( f t T ) (C.10)

Thus, the frequency response H ( f t) of an LPTV system is periodic with T . What
this means is that the output of an LPTV system excited by e 2 can be thought of as
e 2 that is scaled by a gain that changes periodically with time. Again, this is intuitively
satisfying, since the system is varying periodically.

R

R(t)

R (t)

C

C

(a)

(b)

(c)

C

Fixed linear resistor

Linear, time-varying

Linear, periodically

resistor

time-varying resistor

cos(2 ft)

cos(2 ft)

cos(2 ft)

Figure C.6 Response of RC networks to a sinusoidal input. (a) Linear, time-invariant resistor; (b)
linear, time-varying resistor; and (c) linear, periodically time-varying resistor.

Figure C.6 illustrates example LTI, LTV, and LPTV systems excited by a sinusoidal
input. In part (a) of the figure, R and C are fixed. The voltage across the capacitor is a
sinusoid with a constant envelope. In Figure C.6(b), the resistor is linear, but varies with
time. The envelope of the output changes with time, becoming larger for smaller values
of resistance. The resistor in Figure C.6(c) varies periodically with time. As a result, the
gain of the input tone also varies periodically with time, as is evident from the shape of the
envelope.

Since H ( f t) of an LPTV system is periodic with time-period T , it can be expanded
as a Fourier series in t, resulting in

H ( f t) H ( f )e 2 f 1 T (C.11)

The coefficients of the Fourier series H ( f ), called the harmonic transfer functions, are
easily obtained using

H ( f )
1
T 0

H ( f t)e 2 dt (C.12)
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The response of an LPTV system to e 2 is therefore given by

H ( f t)e 2 H ( f )
Harmonic

Transfer Function

e 2 ( )

frequencies

(C.13)

In circuit simulators capable of analyzing LPTV systems in the frequency domain,
the H ( f ) can be obtained by what is often referred to as the periodic AC analysis (.PAC
analysis). In simulator parlance, H ( f ) are often referred to as the kth side-band response.

We make the following observations.

a. The output of an LPTV system (varying periodically at f ) driven by a sinusoid at f

consists of frequency components at f , f f , f 2 f , and so on. H ( f ) represents
the gain from the input (at frequency f ) to the output (at frequency f k f ), as shown
in Figure C.7.

freq.

freq.

f

f 2 ff2 f

Input

Output H0( f ) H1( f )H 1( f )

f

Figure C.7 In an LPTV network varying at f , and excited at a frequency f , the output consists
of tones at frequencies f k f , where k is an integer. H ( f ) represents the gain from the input at
frequency f and output at frequency f k f .

b. By the same token, if the output of an LPTV system (varying periodically at f )
consists of a sinusoid with frequency f , this is, in general, due to contributions from
inputs at frequencies f , f f , f 2 f , and so on.

Let us apply the techniques we have learned to the LPTV system of Figure C.4. The
time-varying impulse response of the system is given by

h(t ) (t ) (t (t )) (t ) ( ) (C.14)

The time-varying frequency response of the system is, therefore,

H ( f t)
0

h(t )e 2 d
0

(t ) ( )e 2 d (t) (C.15)

Since (t) is periodic, it can be expanded as a Fourier series according to

(t) e 2 (C.16)
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The harmonic transfer functions are thus given by H ( f )

Example 1

Consider the system of Figure C.4, with (t) A cos(2 f t) and x(t)
A cos(2 f t)

(t)
1
2

A A cos(2 ( f f )t)
1
2

A A cos(2 ( f f )t) (C.17)

We see that an input tone with frequency f produces output tones at frequencies
f f . The harmonic transfer functions are given by H 1( f ) (A 2), and
H ( f ) 0 for k 1.

We now ask the inverse question: say we observe that the output is a tone at
frequency f . What could x be? Since H ( f ) is nonzero only when k 1, it
follows that the input must consist of tones at ( f f ).

How does one determine the harmonic transfer functions of an LPTV in a circuit sim-
ulator? Akin to the .AC analysis used in an LTI network, simulators equipped to analyze
LPTV systems perform what is often referred to as the .PAC analysis, where PAC refers
to periodic AC.

Many practically useful networks are nonlinear, and often used around a periodically
time-varying operating point, with the inputs themselves being called small signals. The
nonlinear system, when linearized about a periodically time-varying operating point, yields
an LPTV network. In a circuit simulator, the small-signal frequency response is obtained,
therefore, by first running a .PSS analysis , that yields the periodic operating point and
the small-signal LPTV network, after that a .PAC analysis is performed.

The reader might wonder what all the theory above has to do with our study of
CT Ms. To see this, consider a purist’s model of a CT M, where quantization er-

DAC

u(t) (t)

p(t)

L0 (s)

(t) L1 (s)

e[n] (t nT )

[n] (t nT )

(t nT )

Figure C.8 A CT M as an LPTV system.

ror is assumed to be additive (Figure C.8). Sampling the loop-filter output is equivalent to
multiplying (t) with a Dirac delta train. Quantization noise is modeled as an impulse train
with random amplitudes. The output is an impulse train that is fed back after being filtered

PSS stands for periodic steady state.
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by the DAC pulse p(t). The CT M is, therefore, an LPTV system with two inputs (u and
e) and one output , varying with frequency f (time-period T ).

Apart from being periodically time-varying, a CT M has another distinguishing
feature. It is an LPTV system where the output of interest is sampled (in this case ,
corrupted by e). Further, is sampled at a frequency f , that is also the frequency at that
the LPTV system varies. It turns out that this has fundamental and important consequences,
as shown next.

C.4 LPTV Systems with Sampled Outputs

x(t) e 2 LPTV System

Period T

(t)

(t nT )

(nT ) (t nT )

Figure C.9 An LPTV system (varying at a rate f ) whose output is sampled at f .

Consider the LPTV system, varying with period T , shown in Figure C.9. It is excited
by a complex exponential x(t) e 2 . The output (t) is sampled with the same period
T as shown in the figure. From the discussion in the previous section, a CT M is a
system of this type.

Since the system is LPTV, we have

(t) H ( f )e 2 ( ) (C.18)

The samples of (t) are given by

(nT ) H ( f )e 2 ( ) e 2 H ( f ) (C.19)

Consider now the system of Figure C.10. It is a linear time-invariant system, chosen
so that its frequency response Heq( f ) is chosen to be H ( f ), where H ( f ) are the
harmonic transfer functions of the LPTV system of Figure C.9. If this LTI system is excited
by e 2 , its output is

ˆ(t) e 2 H ( f ) (C.20)

When sampled at a rate f 1 T , we obtain

ˆ(nT ) e 2 H ( f ) (C.21)
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x(t) e 2 LTI System ˆ(t)

(t nT )

(nT ) (t nT )
H ( f ) H ( f )

Figure C.10 An LTI system whose output sampled at f yields the same sequence as the system
of Figure C.9.

From (C.19) and (C.21), we see that as far as output samples are concerned, an LPTV
system whose output is sampled at f is equivalent to an LTI system with output sampled
at f . The equivalent LTI filter has a frequency response [2]

Heq( f ) H ( f ) (C.22)

Since any arbitrary input x(t) can be represented as a sum of complex exponentials
via the Fourier transform, it follows that the output samples of an LPTV system (when the
sampling rate is the same as that at that the system is varying) can be thought of as being
obtained by exciting an LTI filter by x(t) and sampling its output at a rate f .

cos(2 f t)

cos(2 f t)

R (t)

(b)

(a)

C

Linear, periodically

time-varying resistor

H ( f )

sampling instants

Figure C.11 (a) An LPTV system varying at f excited by a sinusoid, with output sampled at f ,
and (b) the output of an equivalent LTI system sampled at f .

The result derived above makes intuitive sense due to the following. When an LPTV
system is excited by a tone at f , the output comprises of tones at frequencies f k f , where
k is an integer. When sampled at f , frequency components higher than f are aliased to
f . Thus, if one is only interested in the samples of the system’s output, they could as well
be produced by a properly chosen LTI filter acting on an input tone at a frequency f . We
also emphasize that the equivalence holds only for samples, and not for the waveforms.
Referring to Figs. C.9 and C.10, we note that (nT ) ˆ(nT ), but (t) need not equal
ˆ(t).

How does one interpret the result and discussion above in the context of a CT M?
Recall that in Chapter 8, we concluded (neglecting shaped quantization noise) that the
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[n]

e[n]

1

12

2 1

2

G
(t)

u [n]

e[n]

STF( f )

NTF(z)

(a)

(b)

Figure C.12 A first-order CT M with a switched-capacitor feedback DAC. Y (s) cannot be
expressed as L0 U (s) L1 V (s). (b) Model for the CT M.

output sequence of a CT M (of the kind depicted in Figure C.8) can be thought of as
being obtained by first filtering the input by a time-invariant continuous-time filter with
transfer function

STF( f ) L0 ( j2 f )NTF(e 2 ) (C.23)

and then sampling the resulting waveform at a rate f . We showed this by manipulating the
signal flow graph of the modulator, by separating it into “continuous-time” and “discrete-
time” portions in an effort to make analysis tractable. However, it is not always possible
to separate the modulator in this fashion. A case in point is a CT M with a switched-
capacitor feedback DAC, shown in Figure C.12(a), that we encountered in Chapters 9
and 10. Due to the switching nature of the DAC, it is not possible to express Y (s) as
L0 U (s) L1 V (s).

The result of (C.22), however, provides a fundamental basis for our being able to
model the input-output path of the CT M by means of an LTI filter whose output is
sampled. In the context of the modulator of Figure C.12(a), it means that even though
the loop-filter output cannot be expressed as L0 U (s) L1 V (s), the model for the
modulator remains that shown in Figure C.12(b), namely a CT filter (the STF) operating
on the signal whose output is sampled and added to the output of a DT filter (the NTF)
operating on the quantization error. We thus realize that our model for a CT M result is
far more fundamental.

How do we determine the transfer function of the equivalent LTI system Heq( f ), given
an LPTV system? One way of doing this is to determine H ( f ) of the latter, and then use
(C.22). In many cases, however, it is easier to proceed in the time domain, as illustrated
using Figure C.13.
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1 2 3 4 5

LPTV System

Period T

(t)

(t nT )

h (t)

(t nT )

h (t t)

t

t T

h (t t)(t t)

(nT ) (t nT )

h (nT t) (t nT )

x(t) (t t)

x(t) (t t)

(a)

(b)

(c)

Figure C.13 Determining the impulse response of the equivalent LTI filter corresponding to an
LPTV system with sampled outputs. (a) Excite the LPTV system with an impulse at t. The
sampled output sequence obtained is denoted by (nT ). (b) Exciting the equivalent LTI filter with

(t t) yields heq(nT t). (c) The conceptual output of the equivalent LTI filter and its samples.
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The impulse response of the equivalent LTI filter is denoted by heq(t). Exciting the
LPTV system by an impulse (t t) and sampling the output (t) yields a sequence that
we denote by (nT ). The output of the LTI filter (with input (t t)), when sampled,
yields the sequence heq(nT t). By the principle of equivalence we have been discussing,
it must follow that

heq(nT t) (nT ) (C.24)

as seen in Figure C.13(c). Thus, the output sequence of the LPTV system, when the input
is (t t), yields the samples heq(nT t) of the equivalent LTI filter. By sweeping

t from 0 to T in sufficiently fine increments, we should be able to construct heq(t) in its
entirety.

We demonstrate the technique by determining the STF of a first-order CT M with
an NRZ DAC, as shown in Figure C.14. The sampling rate of the modulator is 1 Hz, and

1

1 2 30

1

1 2 301 2 30

u(t)
(t)

(t n)

1

u(t) (t)

h (t)

t

(a)

(b)

(c)

[n] (t n)

t

Sampled at t n

Figure C.14 (a) CT-MOD1. (b) u(t) (t t) and the resulting (t) and (c) constructing heq(t).

the output sequence of interest is (t) sampled at multiples of 1 s. As discussed above,
to construct the impulse response corresponding to the STF, we excite the modulator with
u(t) (t t) and “measure” the sequence [n]. (t) is a step that goes to 1 at t t. It
is sampled at t 0 and fed back through a filter whose impulse response is the NRZ pulse.

(t), therefore, goes to zero in a linear fashion, as seen in Figure C.14(b), and remains 0
after t 1. The samples of [n] are given by 1 0 0 . It is easy to see that [n]
remains 1 0 0 for 0 t 1. heq(t) is therefore a rectangular pulse, as shown in
part (c) of the figure. Thus, STF( f ) e sinc( f ), that is in agreement with the results
obtained in Chapter 8.

Determining the impulse response of the equivalent LTI filter by applying succes-
sively advanced impulses, as shown in Figure C.13, is useful but time-consuming. Fortu-
nately, by using the concept of inter-reciprocity, heq(t) can be found by a one-shot process.
The key result that enables this is explained with the aid of Figure C.15. Part (a) of the
figure shows an LPTV network being excited by a current impulse at t t . The output
of interest is the voltage 2(t), sampled at f 1 T with a timing offset of t , namely,
the sequence 2[nT t ]. It is possible to find another LPTV network with the same time
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2(t)(t t )
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ˆ1
ˆ2ˆ1(t)

2(t)

i1(t)

ˆ1(t)

ˆ1(t)

sampled at offset (T t )
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2T 3T 4T 5T 6T 7T 8T 9T

tT 2T 3T 4T 5T 6T 7T 8T 9T

sampled at offset t

2

(a)

(b)

i2(t)

Figure C.15 Determining the impulse response of the equivalent LTI filter corresponding to an
LPTV system with sampled outputs using the inter-reciprocal (or adjoint) network.

period T , called the inter-reciprocal (or adjoint) network, denoted by ˆ (Figure C.15(b))
with the following interesting property.

Let the adjoint be excited by an impulse current at its output port at time (T t ).
The voltage at the input port ˆ1(t), when sampled at a timing offset (T t ), yields exactly
the same sequence 2[nT t ]. That is,

ˆ1[nT T t ] 2[nT t ] (C.25)

Since ˆ is an LPTV network with period T , exciting it at T t and observing the
response at (nT T t ) is equivalent to exciting it at t and observing the response at
(nT t ). Since t and t in the experiment of Figure C.15(a) has turned into t and t ,
and since the signals controlling the time-varying elements are flipped in time, the term
“time-reversed” is often used in connection with the adjoint network of Figure C.15(b).

The adjoint network ˆ has the same graph as , and can be derived from by
applying the following element-by-element substitution rules shown in Table C.1:

a. A branch in that is a linear resistor, capacitor, or inductor remains unchanged in
ˆ .

b. A periodically operated switch in controlled by a waveform (t) is replaced in ˆ
by a switch that is controlled by ( t).

c. Linear controlled sources in are replaced by appropriate linear controlled sources
in ˆ . For instance, a CCCS in is replaced by a VCVS in ˆ , with the controlling
and controlled ports interchanged, as seen in Table C.1.

d. If is expressed as a signal flow graph, summing junctions, and pick-off points of
are replaced by pick-off points and summing junctions, respectively, in ˆ .
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Table C.1 Transformations of linear controlled sources, summing junctions, pick-off points,
multipliers, and periodically operated switches from to ˆ .

ˆ

11 i2 i2

i1i1 2 2

11 2 2

Ri1i1 Ri2 i2

x z zx

z x xz

x

(t)

z z

( t)

x

(t) ( t)
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e. A time-varying gain (t) in is replaced by another time-varying gain ( t) in ˆ .

The adjoint network greatly simplifies the process of determining heq(t) of , as
discussed below. In what follows, the output sequence of interest is assumed to be 2(nT )
(in other words, t 0). We denote the impulse response of the equivalent LTI filter by
heq(t). To obtain heq(nT t), as we discussed earlier, should be excited by (t t)
and 2(t) should be sampled at t nT , as shown in Figure C.16(a). In the inter-reciprocal
network, this corresponds to exciting the adjoint ˆ with (t) at its “output” port, but
sampling ˆ1(t) with a timing offset of ( t) t. In other words, heq(nT t)

2(nT ) ˆ1(nT t).

ˆ

1

2(t)
ˆ1
ˆ2ˆ1(t)2

(a)

ˆ

1

2(t)
ˆ1
ˆ2ˆ1(t)2

(b)

(t t)

(t 2 t)

2[nT ] h (nT t)

2[nT ] h (nT 2 t)

ˆ1[nT t] h (nT t)

ˆ1[nT 2 t] h (nT 2 t)

(t)

(t)

Figure C.16 (a) Obtaining heq(nT t) using the original and adjoint networks and (b) obtaining
heq(nT 2 t).

The next step is to obtain heq(nT 2 t). This is accomplished by driving with a
current (t 2 t) and sampling 2(t) at t nT , as shown in Figure C.16(b). In the adjoint,
the output port should be driven by a current (t) (as in Figure C.16(a)), but ˆ1(t) should
now be sampled with a timing offset of ( 2 t) 2 t. Repeating this for 0 t T ,
we see that heq(t) is the waveform ˆ1(t) that manifests at the “input” port of ˆ when its
“output” port is excited by an impulse current at t 0. Thus, multiple experiments, each
involving excitation with an impulse, that are needed to determine heq(t) from are not
necessary – simply exciting the adjoint once is sufficient.

This is best illustrated with an example. We (again) attempt to find heq(t) for CT-
MOD1, shown in Figure C.17(a). The output is the sampled version of (t), sampled at
t n. The first step in the process is to draw the adjoint signal flow graph (Figure C.17(b)).
The input of CT-MOD1 is the output of relevance in the adjoint. The directions of the
integrator, and DAC (that acts like a filter with a rectangular impulse response) are reversed.
The Dirac delta train is time-reversed; since the impulse appear at multiples of 1 s, the
reversal has no impact on the waveform. The “output” port in this adjoint signal flow
graph should be excited by an impulse at t 0. The output of the integrator in the adjoint,
denoted by û, has a step at t 0, as seen in Figure C.17(c). This is fed back after being
convolved by the NRZ DAC pulse, resulting in a feedback waveform that is initially a unit
ramp. At t 1, the ramp is sampled and fed into the integrator. Since ˆ (1) 1, û(t)
becomes zero beyond t 1. As a consequence, ˆ (t) ramps linearly downwards, attaining a
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ˆ (t)

Sampled at t n

Figure C.17 Determining heq(t) for CT-MOD1 using the adjoint signal flow graph: (a) CT-MOD1
(b) The adjoint corresponding to CT-MOD1, excited by an impulse at its “output” port. (c) û(t), that
is the impulse response corresponding to the STF and (d) ˆ(t).

value of 0 at t 2, and it remains zero thereafter, as shown in Figure C.17(d). The impulse
response corresponding to the STF, therefore, is the unit rectangular function, as we would
expect.

C.4.1 Multiple Inputs

+
−

i1(t)

(a) (c)

(b)

ˆ

(t t )

(t)

1
2

(nT t )

nT t

ˆ1
ˆ2

(nT t )

nT ti1(t)

(t) h (t)

h 1(t)

h 1(t t )

h (t t )

Figure C.18 (a) Original network with multiple inputs and one output, sampled at a timing offset
t . (b) Equivalent model with LTI filters and (c) determination of h 1 (t) using the adjoint
network.

Figure C.18 shows the extension of our results to an LPTV network with multiple
input sources. The output of interest is assumed (without loss of generality) to be (t),
sampled at a timing offset of t . The r inputs can be voltage or current sources. The output
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of the system can be represented as shown in Figure C.18(b), where h 1 (t) denote the
impulse responses of LTI filters. Thanks to inter-reciprocity, all the impulse responses can
be determined using just one time domain analysis as shown in Figure C.18(c), by exciting
the adjoint network ˆ with an impulsive current at time t .

C.4.1.1 Noise If the multiple inputs in Figure C.18(a) were noise sources, the model
of Figure C.18(b) simplifies the evaluation of the contributions of the individual noise
sources and the total noise spectral density of the output sequence. In practice, individual
noise sources are usually independent. Denoting the autocorrelation function of the lth

noise process by R ( ), the corresponding function at the output of the equivalent LTI
filter is given by

R ( ) R ( ) h ( ) h ( ) (C.26)

where denotes convolution. The autocorrelation function of the noise sequence after
sampling is given by

R [m] R (mT ) (C.27)

The power spectral density of the output sequence due to the lth noise source is simply the
Fourier transform of the sequence R [m] in (C.27). Since the noise sources are indepen-
dent, the autocorrelation function of the sampled output is given by

R[m] R (mT ) (C.28)

C.4.2 Alias Rejection in Continuous-Time Delta-Sigma Modulators Revis-
ited

Having armed ourselves with the arsenal needed to tackle sampled LPTV systems, we
are now in a position to deal with CT Ms whose loop-filters are time-varying. Exam-
ples of such modulators are those that use switched-capacitor, or return-to-open DACs.
As we discussed in reference to the modulator of Figure C.8, the relation STF( f )
L0 ( j2 f )NTF(e 2 ) only applies when the loop-filter is time-invariant. How does one
find the STF when the loop-filter is time-varying, as in Figure C.19(a)?

The quantizer samples the loop-filter’s output (t), and the rate at that (t) is sampled
is the same as that at which the loop-filter is varying. Under these circumstances, as we
discussed earlier in this section, one can find an equivalent time-invariant transfer function
L (s), that when excited by u(t) yields the same [n] that would result, had u(t) been
the input of a time-varying loop-filter. Let leq(t) denote the impulse response correspond-
ing to L (s). To determine leq(t), we would have to break the loop (Figure C.19(b)),
set to zero, and use the adjoint of the resulting LPTV system.

The procedure is best illustrated with an example. Consider the loop-filter of a CIFF
CT M with a switched-capacitor DAC. When the loop is broken, and is set to zero, the
resulting network is as shown in Figure C.20(a). The input integrator is assumed to be of
the active-RC type, and uses a single-stage OTA. The rest of the loop-filter, assumed to be
time-invariant, is represented by L2(s). The output of L2 is sampled on the edge of .

The adjoint network is shown in Figure C.20(b). The OTA (that is a VCCS) in the
original network is replaced by an OTA whose input and output ports are interchanged.
The switch control signals are time reversed – in other words, if (t) denotes a switch
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Loop Filter

LPTV

Loop Filter

Figure C.19 (a) CT M with a time-varying loop-filter. (b) The LPTV loop-filter, whose output
is sampled at f , can be treated as an equivalent LTI system, that can be determined using the adjoint
method.

control signal in the original network, it is be replaced by ( t) in the adjoint. leq(t) is
obtained by exciting the adjoint network with a current impulse (t) at the “output” port
and observing the resulting current waveform through R, that is (t) R

To find (t) in the adjoint, we proceed as follows. The OTA and input resistor R are
replaced by their Thevenin equivalent, as seen by the SC DAC (Figure C.21(a)). th(t) is a
step function with magnitude 1 C. Without the DAC, (t) and th(t) would be equal – and
leq(t), that is (t) R, would then be the impulse response of a time-invariant loop-filter.
We thus denote (1 R) th(t) by lideal(t).

The DAC capacitor C is connected to x (through R ) during ˆ2. This causes to
dip momentarily. The OTA then charges C to th(t) with a time-constant C(R 1 Gota).
At the end of ˆ2, reaches th. The same sequence of events repeats in subsequent clock
cycles. The resulting is shown in Figure C.21(b), that also depicts th(t) for convenience.
To achieve good jitter immunity, 0 5C ota T , that means that the DAC capacitor is
almost instantly charged to th(t). The DAC current can therefore be approximated by an
impulsive sequence as follows.

i(t) f C
0

th((n 0 5)T ) (t (n 0 5)T ) (C.29)

Since leq(t) (t) R and (t) th(t) (i(t) Gota), we have

leq(t) th(t)
R

ideal ( )

C

RGota
th(t)

0
(t (n 0 5)T ) (C.30)

The first term on the right-hand side (RHS) of the equation above is lideal(t). The second
term, arising due to the SC DAC, is the product of th and a Dirac delta train with frequency
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Figure C.20 (a) Loop filter of a CIFF CT M with a switched-capacitor DAC. (b) Determining
the impulse response of the equivalent time-invariant filter using the adjoint network.
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approximation to i(t).
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f . This indicates that sampling of occurs at this rate. This makes sense, since the virtual
ground node is being sampled every clock period. The Fourier transform of leq(t) is thus
seen to be

Leq( j2 f ) Lideal( j2 f )
f C

Gota
Lideal( j2 ( f k f ))

( 2 )

(C.31)
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Figure C.22 Magnitude plots of Lideal, E( j2 f ), NTF, and STF for a third-order CIFF CT M
with a switched-capacitor feedback DAC.

Figure C.22 shows representative magnitude responses of Lideal( j2 f ) and E( j2 f ).
E is periodic with f . To obtain the STF, Leq( Lideal E) is multiplied by the NTF. As
seen from (C.31), for frequencies of the form ( f k f ), where f f , Leq( j2 f )
( f C Gota)Lideal( j2 f ). Further, NTF(e 2 ( ) ) NTF(e 2 ) 1 Lideal( j2 f ).
We thus have

STF( f f )
f C

Gota

1
GotaR

(C.32)

Using an SC DAC has, therefore, resulted in a severe degradation of the modulator’s alias
rejection, as seen in Figure C.22. This is consistent with our first-order analysis in Chapter
10, that was based on “average” arguments.
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specialty functions, 503
supported topologies, 534
utiility functions, 503

ADC
extended-counting, 415

amplifier
folded-cascode, 178

anti-aliasing
switched-capacitor DAC, 331

auto-zeroing, 204

bandpass modulator
decimation, 471

Bode sensitivity integral, 100
bootstrapped switch, 207

canonical signed digit form, 460
CIFB

CT M, 246
CT-MOD2, 237
discrete-time , 104

CIFF
CT M, 248
CT-MOD2, 236
discrete-time , 112
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CIFF-B
CT M, 249
discrete-time , 113

clock jitter
CT M

phase-noise, 282
white, 276

FIR DAC, 287
impulsive DAC, 286
NRZ DAC, 278
phase noise

CT M, 284
RZ DAC, 282
single-bit, 278
switched-capacitor DAC, 286
white

discrete-time , 273
comparator

dual-differencing, 204
effect of offset, 320
regeneration time-constant, 194
StrongARM, 191

CRFB
discrete-time , 111

CRFF
discrete-time , 112

CSD, 460
CT M

CIFB, 246
CIFF, 248
CIFF-B, 249
clock jitter

white, 276
closed-loop fitting, 336
comparator

metastability, 293
dynamic-range scaling, 253
high-order, 239
influence of DAC pulse, 241
loop-filter nonlinearity, 340
method of moments, 242, 244
simulation, 250
switched-capacitor DAC, 328
systematic design, 333
thermal noise, 313
time-constant tuning, 273
time-constant variations, 271

CT-MOD1
excess loop delay, 260
frequency scaling, 229
purist’s model, 226
STF, 232

CT-MOD2
CIFB

STF, 237
CIFF

STF, 236
excess loop delay, 264
influence of DAC pulse, 237

NTF, 236
current injection method, 342

DAC

analog post-filters, 441
digital correction, 437
dual truncation, 432
interpolation filter, 438
mismatch-shaping, 434
multi-bit vs. single-bit, 438
single-stage, 428
system diagram, 426

binary-coded, 206
current-steering, 327
error-feedback, 429
inter-symbol interference, 323
MASH, 430
multi-bit

analog post-filters, 447
non-return-to-zero, 325
NRZ, 325
return-to-open, 326
return-to-zero, 325
RZ, 280
single-bit

analog post-filters, 442
switched-resistor, 322
transition error, 159
unary-coded, 206

dead-zone
MOD1, 57
MOD2, 75

delta modulation, 21
direct-conversion, 363
discrete-time

CIFB, 104
CIFF, 112
CIFF-B, 113
clock jitter, 273
CRFB, 111
CRFF, 112
dynamic-range scaling, 106
loop filter, 104
simulation, 114
state-space, 114

double-sampling integrator, 209
dynamic-range scaling

CT M, 253
discrete-time , 106

error-feedback, 23
DAC, 429
MOD1, 60
MOD2, 79

excess loop delay
compensation, 267
CT-MOD1, 260
CT-MOD2, 264
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high-order CT M, 267

Farrow filter, 477
figure of merit

Schreier, 20
Walden, 20

FIR DAC
clock jitter, 287
compensation, 289, 348
metastability, 297
state-space, 350

folded frequency response, 458
fractal sequencing, 417
frequency-interleaving, 365

gain-boosting, 211
gain-squaring, 212

high-order
noise-coupled, 128
SQNR, 85

IADC
design procedure, 410
optimal decimation filter, 413

idle tones
MOD1, 55

image transfer function, 394
image-rejection ratio (IRR), 392
in-band noise

MOD1, 44
incremental ADC, 407
integrator

assisted-opamp, 345
double-sampling, 209
Gm-C, 302
OTA-RC, 302
split-steering, 213
stacked, 214
switched-capacitor, 168

inter-symbol interference
CT M, 280
switched-resistor DAC, 323

latch
sense-amplifier, 317
StrongARM, 293, 318

Lee’s rule, 102
loop filter

discrete-time , 104
lossless discrete integrator, 375

MASH
noise leakage, 123
DAC, 430
Leslie–Singh, 118
sturdy-MASH, 126
two-stage, 120

maximum stable amplitude
estimation, 90

limits, 89
mismatch-shaping

A-DWA, 146
Bi-DWA, 146
DWA, 141
rotation, 140
segmented scrambling, 157

MOD1
dead-zone, 57
error-feedback, 60
finite dc gain, 50
idle tones, 55
in-band noise, 44
nonlinear behavior, 54
single-bit, 51

MOD2
dead-zone, 75
error-feedback, 79
low-distortion structure, 78
noise-coupled, 79
nonlinear, 70
optimal NTF, 81
simulation, 67
SQNR, 65
stability, 73

noise
CT M, 313
thermal vs. quantization, 315

noise-coupled
high-order, 128
MOD2, 79

nonlinear
MOD2, 70

NTF
CT M

complex zeros, 249
CT-MOD2, 236
optimized zeros, 97
systematic design, 95

opamp
assisted, 345
feed-forward compensation

stability, 311
Miller compensation, 305
Miller vs. feedforward compensation, 308
single-stage, 304
two-stage feedforward-compensated, 355

polyphase decomposition, 453
polyphase signals, 402

quadrature
modulator, 396

filter, 392
mixing, 391
quarter-circuit, 395
signals, 391
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quantizer
gain, 35
gain, two inputs, 38
mid-rise, 30
mid-tread, 30
noise, 30
overload, 37

receiver
direct-conversion, 363
superheterodyne, 363

reference shuffling, 144

sampling
analysis, 28

simulation
CT M, 250
discrete-time , 114
MOD2, 67

sinc filter
modified, 418

single-bit
clock jitter, 278
high-order, 101
MOD1, 51

SQNR, 85
stability

MOD1, 57
MOD2, 73
signal-dependent, 85

state-space
discrete-time , 114

superheterodyne, 363
switched-capacitor DAC

anti-aliasing, 331
clock jitter, 286

transformation
CT-to-DT, 252
DT-to-CT, 234

twin double-sampling, 215

unary-to-binary converter, 144

zero-order hold, 453
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